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A new combination of properties for a hash table

Context

Dictionary of Key-Value pairs

Important data structure in several domains (OS, etc.)

A resizable hash table

Provides the strongest progress guarantee (wait-freedom)

Targets the most common load for a hash table
I Large majority of Lookup operations

Outperforms existing non-blocking algorithms for such
workloads
I By enforcing 2 important design rules
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Hash tables

A hash function associates
items to buckets
I Fixed-size buckets

3 operations:
I Insert(K, V) (If K

already exists, V is updated)
I Delete(K)
I Lookup(K)
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Dynamic hashing

Adapts the number of buckets
to the number of items

Ensures constant average time
for operations
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Extendible hashing

Hash keys manipulated as bit
strings

I A prefix of the key is used to
find the appropriate bucket

Resizing actions are local

I Splitting and merging buckets
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A wait-free concurrent hash table

Natural parallelism

Operations applying to different
parts of the hash table can run
in parallel

More complex with dynamic
hashing

Non-blocking algorithm

Lock freedom: At least one
thread makes progress

Wait freedom: Every
operation completes in a finite
number of steps
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Towards an efficient resizable hash table: Insights

Most common load for a hash table

Large majority of Lookup() operations

Resizing actions are rare

Design rules to achieve best performance

Lookup() operations should always be allowed to proceed
without any synchronization

When no resizing actions are executed, update operations
applying to different buckets should be allowed to progress
fully in parallel
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Related work

The split-ordered list (LF-Split)

Shalev and Shavit [PODC’03]

LF-Split does not comply with our design rules
I During Lookup() operations, threads have to help removing

items marked for deletion.
I A global counter is modified after every insertion/deletion.

LF/WF-Freeze

Liu, Zhang, and Spear [PODC’14]

WF-Freeze does not comply with our design rules
I A global sequence number is required to tag update operations
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Contributions

The design of a wait-free extendible hash table

Follows our two design rules

First algorithm to use several instances of the PSim universal
construction [SPAA’11].
I Appropriatly synchronized to ensure wait-freedom

Experiments demonstrate the new performance trade-off

Outperforms all existing non-blocking resizable hash tables
when resizing actions are rare

Slower resizing
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Our Wait-Free Algorithm



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The hash table structure
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Two levels of indirection

One instance of PSim for the DState and for each BState
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Insert (no resizing) and Lookup operations
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Lookup operations are executed without any synchronization
(BState objects are immutable)

Insert operations on different buckets do not synchronize
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Splitting a bucket
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To avoid losing updates:

Only full buckets can be replaced during resizing

No update operation can be run on a full bucket
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Increasing the directory size
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Ensuring wait-freedom

The problem

Ensuring that updates on DState and BState objects are
wait-free is not enough to ensure that the operations on the
hash table are wait-free

Example

1. Thread Ta tries to insert in bucket B → full

2. Ta tries to update the directory → already done

3. Ta tries to insert in bucket B ′ → full

4. Ta tries to update the directory . . .
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Ensuring wait-freedom

The problem

Ensuring that updates on DState and BState objects are
wait-free is not enough to ensure that the operations on the
hash table are wait-free

Solution

When resizing the directory, all pending updates applying to
full buckets should be run
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Executing each operation exactly once

The problem

An Insert operation can be applied directly on a BState or
through a resizing action
I How to ensure that an operation is never executed twice?

Example

1. Thread Ta wants to run an Insert operation

I It registers its operation in the help array

2. Thread Tb executes the operation of Ta during a resizing action

3. Ta access the bucket B where it should execute its operation

I Has its operation already been executed?
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Executing each operation exactly once

The problem

An Insert operation can be applied directly on a BState or
through a resizing action
I How to ensure that an operation is never executed twice?

Solution

Per-thread sequence numbers are used to tag operations

The sequence number of the last applied operation is stored in
each BState

Sequence numbers are evaluated before executing an update
operation
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Experimental Evaluation



Implementation

Our proposed algorithm (WF-Ext)

Implementation in C

Epoch-based memory reclamation

Efficient memory allocation of BState objects

State-of-the-art algorithms

Reference C implementations and modified versions:

LF-Split-M: Modified version to avoid the global counter

LF-Freeze-M:
I Implementation of our semantic for Insert operations
I Integration of our efficient memory allocator
I Recall: WF-Freeze is much slower than LF-Freeze
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Evaluation setup

Hardware

64-core machine with 4 NUMA nodes (Intel Broadwell)

Software

System memory allocator: tests with the glibc allocator and
TCMalloc

NUMA policy: tests with Local and Interleave policies

Methodology

Average over 10 runs

All combinations of parameters are tested for each algorithm
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Throughput with 90% Lookups (directory stable)

Description of the experiment:

Initial state: half-full hash table

5% Insert ops; 5% Delete ops
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Conclusion

A wait-free extendible hash table

Follows two design rules to preserve the natural parallelism of
such data structures

Synchronizes several instances of the PSim algorithm to
acheive wait-freedom

A new performance trade-off

Outperforms existing lock-free algorithms when resizing
actions are rare

Slower resizing actions
I Amortized over long runs
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Throughput with 50% Lookups (directory stable)
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Performance with resizing
Description of the experiment

Initial state: Empty hash table with 2 buckets

90% Lookup ops; 10% Insert ops

Throughput with 1K items over a 5 second run
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Resizing efficiency

Description of the experiment

Inital state: empty hash table with 2 buckets

50% Lookup ops; 50% Insert ops

Measurement: Time to reach final size
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Additional information

Merging buckets

Buckets to be merged have to be frozen

A merging action may fail

Compliance with our design rules

Lookup operations are executed without any synchronization

When no resizing is needed, an update operation is executed
by the PSim instance of the bucket
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Avoiding losing updates

The problem

Since an update operation on a bucket might be run in parallel
with resizing the directory, how to avoid loosing updates?

Example

1. Thread Ta updates bucket B during an update operation

2. Thread Tb changes the directory during a resizing action

3. Is the update made by Ta visible in the new directory published by
Tb?
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Avoiding losing updates

The problem

Since an update operation on a bucket might be run in parallel
with resizing the directory, how to avoid loosing updates?

Solution

For non-full buckets:
I The two levels of indirection ensure that the update of Ta

remains accessible

For full buckets:
I Updates on full buckets are not allowed
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