
An Efficient Wait-free Resizable Hash Table

Panagiota Fatourou1,2, Nikolaos Kallimanis1, Thomas Ropars3

1 FORTH ICS
2 University of Crete

3 Univ. Grenoble Alpes

2018 1



A new combination of properties for a hash table

Context

Dictionary of Key-Value pairs

Important data structure in several domains (OS, etc.)

A resizable hash table

Provides the strongest progress guarantee (wait-freedom)

Targets the most common load for a hash table
I Large majority of Lookup operations

Outperforms existing non-blocking algorithms for such
workloads
I By enforcing 2 important design rules

2018 2



Hash tables

A hash function associates
items to buckets
I Fixed-size buckets

3 operations:
I Insert(K, V) (If K

already exists, V is updated)
I Delete(K)
I Lookup(K)

00

01

10

11

000010

010000
011110

00

01

10

11

2018 3



Dynamic hashing

Adapts the number of buckets
to the number of items

Ensures constant average time
for operations

00

0101

1

010

011

000

001

010

011

100

101

110

111

000010

010000
011110

010000
010011

011110

Insert(010011)

2018 4



Dynamic hashing

Adapts the number of buckets
to the number of items

Ensures constant average time
for operations

00

0101

1

010

011

000

001

010

011

100

101

110

111

000010

010000
011110

010000
010011

011110

Insert(010011)

2018 4



Dynamic hashing

Adapts the number of buckets
to the number of items

Ensures constant average time
for operations

00

0101

1

010

011

000

001

010

011

100

101

110

111

000010

010000
011110

010000
010011

011110

Insert(010011)

2018 4



Extendible hashing

Hash keys manipulated as bit
strings

I A prefix of the key is used to
find the appropriate bucket

Resizing actions are local

I Splitting and merging buckets

00

1

010

011

000

001

010

011

100

101

110

111

000010

010000
010011

011110

Insert(010011)

000010
00

000

001

010

011

100

101

110

111

2018 5



Extendible hashing

Hash keys manipulated as bit
strings

I A prefix of the key is used to
find the appropriate bucket

Resizing actions are local

I Splitting and merging buckets

00

1

010

011

000

001

010

011

100

101

110

111

000010

010000
010011

011110

Insert(010011)

000010
00

000

001

010

011

100

101

110

111

2018 5



A wait-free concurrent hash table

Natural parallelism

Operations applying to different
parts of the hash table can run
in parallel

More complex with dynamic
hashing

Non-blocking algorithm

Lock freedom: At least one
thread makes progress

Wait freedom: Every
operation completes in a finite
number of steps

00

011

010

1

000

001

010

011

100

101

110

111

000010

010000
010011

011110

TA: Insert(100000)

TB : Insert(010011)

2018 6



A wait-free concurrent hash table

Natural parallelism

Operations applying to different
parts of the hash table can run
in parallel

More complex with dynamic
hashing

Non-blocking algorithm

Lock freedom: At least one
thread makes progress

Wait freedom: Every
operation completes in a finite
number of steps

00

011

010

1

000

001

010

011

100

101

110

111

000010

010000
010011

011110

TA: Insert(100000)

TB : Insert(010011)

2018 6



Towards an efficient resizable hash table: Insights

Most common load for a hash table

Large majority of Lookup() operations

Resizing actions are rare

Design rules to achieve best performance

Lookup() operations should always be allowed to proceed
without any synchronization

When no resizing actions are executed, update operations
applying to different buckets should be allowed to progress
fully in parallel

2018 7



Related work

The split-ordered list (LF-Split)

Shalev and Shavit [PODC’03]

LF-Split does not comply with our design rules
I During Lookup() operations, threads have to help removing

items marked for deletion.
I A global counter is modified after every insertion/deletion.

LF/WF-Freeze

Liu, Zhang, and Spear [PODC’14]

WF-Freeze does not comply with our design rules
I A global sequence number is required to tag update operations

2018 8



Contributions

The design of a wait-free extendible hash table

Follows our two design rules

First algorithm to use several instances of the PSim universal
construction [SPAA’11].
I Appropriatly synchronized to ensure wait-freedom

Experiments demonstrate the new performance trade-off

Outperforms all existing non-blocking resizable hash tables
when resizing actions are rare

Slower resizing

2018 9



Our Wait-Free Algorithm



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The PSim algorithm
Fatourou and Kallimanis [SPAA’11]

Announce the operation to be executed

for k in 1..2:

Make a local copy of the object to update

Apply all pending operations on the local object

Try making the object globally visible using CAS

00
000010

00

0 0 0 0a:

res:

BState

b

op0help:

1 0 0 0t:

T2: Insert(001110)

op0 op2

1 0 1 0

000010
00

0 0 0 0a:

res:

BState

001110

1 0 1 0

2018 11



The hash table structure

00

01

10

11

DState

prefix=0

prefix=1

Bucket

000010

100000

BState

ht

help:

Two levels of indirection

One instance of PSim for the DState and for each BState

2018 12



Insert (no resizing) and Lookup operations

00

01

10

11

prefix=0

prefix=1

000010

100000

ht

Ta: Insert(111100)

Tb: Lookup(100010)

100000
111100

Lookup operations are executed without any synchronization
(BState objects are immutable)

Insert operations on different buckets do not synchronize

2018 13



Insert (no resizing) and Lookup operations

00

01

10

11

prefix=0

prefix=1

000010

100000

ht

Ta: Insert(111100)

Tb: Lookup(100010)

100000
111100

Lookup operations are executed without any synchronization
(BState objects are immutable)

Insert operations on different buckets do not synchronize

2018 13



Insert (no resizing) and Lookup operations

00

01

10

11

prefix=0

prefix=1

000010

100000

ht

Ta: Insert(111100)

Tb: Lookup(100010)

100000
111100

Lookup operations are executed without any synchronization
(BState objects are immutable)

Insert operations on different buckets do not synchronize

2018 13



Insert (no resizing) and Lookup operations

00

01

10

11

prefix=0

prefix=1

000010

100000

ht

Ta: Insert(111100)

Tb: Lookup(100010)

100000
111100

Lookup operations are executed without any synchronization
(BState objects are immutable)

Insert operations on different buckets do not synchronize

2018 13



Splitting a bucket

00

01

10

11

prefix=0

prefix=1

000010

100000
111100

ht

Ta: Insert(110011)

00

01

10

11

prefix=10

prefix=11

100000

111100
110011

00

01

10

11

To avoid losing updates:

Only full buckets can be replaced during resizing

No update operation can be run on a full bucket

2018 14



Splitting a bucket

00

01

10

11

prefix=0

prefix=1

000010

100000
111100

ht

Ta: Insert(110011)

00

01

10

11

prefix=10

prefix=11

100000

111100
110011

00

01

10

11

To avoid losing updates:

Only full buckets can be replaced during resizing

No update operation can be run on a full bucket

2018 14



Splitting a bucket

00

01

10

11

prefix=0

prefix=1

000010

100000
111100

ht

Ta: Insert(110011)

00

01

10

11

prefix=10

prefix=11

100000

111100
110011

00

01

10

11

To avoid losing updates:

Only full buckets can be replaced during resizing

No update operation can be run on a full bucket

2018 14



Splitting a bucket

00

01

10

11

prefix=0

prefix=1

000010

100000
111100

ht

Ta: Insert(110011)

00

01

10

11

prefix=10

prefix=11

100000

111100
110011

00

01

10

11

To avoid losing updates:

Only full buckets can be replaced during resizing

No update operation can be run on a full bucket

2018 14



Splitting a bucket

00

01

10

11

prefix=0

prefix=1

000010

100000
111100

ht

Ta: Insert(110011)

00

01

10

11

prefix=10

prefix=11

100000

111100
110011

00

01

10

11

To avoid losing updates:

Only full buckets can be replaced during resizing

No update operation can be run on a full bucket

2018 14



Increasing the directory size

00

01

10

11

prefix=0

prefix=10

prefix=11

000010

100000

111100
110011

ht

Ta: Insert(110110)

000

001

010

011

100

101

110

111

prefix=110

prefix=111

110011
110110

111100

00

01

10

11

2018 15



Increasing the directory size

00

01

10

11

prefix=0

prefix=10

prefix=11

000010

100000

111100
110011

ht

Ta: Insert(110110)

000

001

010

011

100

101

110

111

prefix=110

prefix=111

110011
110110

111100

00

01

10

11

2018 15



Increasing the directory size

00

01

10

11

prefix=0

prefix=10

prefix=11

000010

100000

111100
110011

ht

Ta: Insert(110110)

000

001

010

011

100

101

110

111

prefix=110

prefix=111

110011
110110

111100

00

01

10

11

2018 15



Increasing the directory size

00

01

10

11

prefix=0

prefix=10

prefix=11

000010

100000

111100
110011

ht

Ta: Insert(110110)

000

001

010

011

100

101

110

111

prefix=110

prefix=111

110011
110110

111100

00

01

10

11

2018 15



Ensuring wait-freedom

The problem

Ensuring that updates on DState and BState objects are
wait-free is not enough to ensure that the operations on the
hash table are wait-free

Example

1. Thread Ta tries to insert in bucket B → full

2. Ta tries to update the directory → already done

3. Ta tries to insert in bucket B ′ → full

4. Ta tries to update the directory . . .

2018 16



Ensuring wait-freedom

The problem

Ensuring that updates on DState and BState objects are
wait-free is not enough to ensure that the operations on the
hash table are wait-free

Solution

When resizing the directory, all pending updates applying to
full buckets should be run

2018 16



Executing each operation exactly once

The problem

An Insert operation can be applied directly on a BState or
through a resizing action
I How to ensure that an operation is never executed twice?

Example

1. Thread Ta wants to run an Insert operation

I It registers its operation in the help array

2. Thread Tb executes the operation of Ta during a resizing action

3. Ta access the bucket B where it should execute its operation

I Has its operation already been executed?

2018 17



Executing each operation exactly once

The problem

An Insert operation can be applied directly on a BState or
through a resizing action
I How to ensure that an operation is never executed twice?

Solution

Per-thread sequence numbers are used to tag operations

The sequence number of the last applied operation is stored in
each BState

Sequence numbers are evaluated before executing an update
operation

2018 17



Experimental Evaluation



Implementation

Our proposed algorithm (WF-Ext)

Implementation in C

Epoch-based memory reclamation

Efficient memory allocation of BState objects

State-of-the-art algorithms

Reference C implementations and modified versions:

LF-Split-M: Modified version to avoid the global counter

LF-Freeze-M:
I Implementation of our semantic for Insert operations
I Integration of our efficient memory allocator
I Recall: WF-Freeze is much slower than LF-Freeze

2018 19



Evaluation setup

Hardware

64-core machine with 4 NUMA nodes (Intel Broadwell)

Software

System memory allocator: tests with the glibc allocator and
TCMalloc

NUMA policy: tests with Local and Interleave policies

Methodology

Average over 10 runs

All combinations of parameters are tested for each algorithm

2018 20



Throughput with 90% Lookups (directory stable)

Description of the experiment:

Initial state: half-full hash table

5% Insert ops; 5% Delete ops

4 16 32 48 64
Threads

0

20

40

60

80

100

120

140

160

M
op
s/
s

LF-Split

LF-Split-M

LF-Freeze

LF-Freeze-M

WF-Ext

1K items

4 16 32 48 64
Threads

0

50

100

150

200

250

M
op
s/
s

256K items

2018 21



Conclusion

A wait-free extendible hash table

Follows two design rules to preserve the natural parallelism of
such data structures

Synchronizes several instances of the PSim algorithm to
acheive wait-freedom

A new performance trade-off

Outperforms existing lock-free algorithms when resizing
actions are rare

Slower resizing actions
I Amortized over long runs

2018 22



References

[1] Yujie Liu, Kunlong Zhang, and Michael Spear. “Dynamic-sized
Nonblocking Hash Tables”. Proceedings of the 2014 ACM Symposium on
Principles of Distributed Computing. PODC ’14. Paris, France, 2014.

[2] Panagiota Fatourou and Nikolaos D. Kallimanis. “Highly-Efficient
Wait-Free Synchronization”. Theory of Computing Systems (2013),
pp. 1–46.

[3] Ori Shalev and Nir Shavit. “Split-ordered lists: Lock-free extensible hash
tables”. Journal of the ACM 53.3 (2006), pp. 379–405.

Thanks!

2018 23



Throughput with 50% Lookups (directory stable)

4 16 32 48 64
Threads

0

20

40

60

80

100

120

140

160

M
op
s/
s

LF-Split

LF-Split-M

LF-Freeze

LF-Freeze-M

WF-Ext

1K items

4 16 32 48 64
Threads

0

50

100

150

200

250

M
op
s/
s

256K items

2018 24



Performance with resizing
Description of the experiment

Initial state: Empty hash table with 2 buckets

90% Lookup ops; 10% Insert ops

Throughput with 1K items over a 5 second run

4 16 32 48 64
Threads

0

25

50

75

100

125

150

175

200

M
op
s/
s

LF-Split

LF-Split-M

LF-Freeze

LF-Freeze-M

WF-Ext

2018 25



Resizing efficiency

Description of the experiment

Inital state: empty hash table with 2 buckets

50% Lookup ops; 50% Insert ops

Measurement: Time to reach final size

1 K 4 K 16 K 64 K 256 K
Size

0

1

10

100

1000

10000

T
im
e
(m

s)

(Lower is better)

LF-Split

LF-Split-M

LF-Freeze

WF-Ext

2018 26



Additional information

Merging buckets

Buckets to be merged have to be frozen

A merging action may fail

Compliance with our design rules

Lookup operations are executed without any synchronization

When no resizing is needed, an update operation is executed
by the PSim instance of the bucket

2018 27



Avoiding losing updates

The problem

Since an update operation on a bucket might be run in parallel
with resizing the directory, how to avoid loosing updates?

Example

1. Thread Ta updates bucket B during an update operation

2. Thread Tb changes the directory during a resizing action

3. Is the update made by Ta visible in the new directory published by
Tb?

2018 28



Avoiding losing updates

The problem

Since an update operation on a bucket might be run in parallel
with resizing the directory, how to avoid loosing updates?

Solution

For non-full buckets:
I The two levels of indirection ensure that the update of Ta

remains accessible

For full buckets:
I Updates on full buckets are not allowed

2018 28


	Our Wait-Free Algorithm
	Experimental Evaluation
	References

