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ABSTRACT
This paper presents an efficient wait-free resizable hash table. To
achieve high throughput at large core counts, our algorithm is
specifically designed to retain the natural parallelism of concurrent
hashing, while providing wait-free resizing. An extensive evalua-
tion of our hash table shows that in the common case where resiz-
ing actions are rare, our implementation outperforms all existing
lock-free hash table implementations while providing a stronger
progress guarantee.
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1 INTRODUCTION
As the core count is increasing in modern processors, designing
data structures that provide good performance when a large num-
ber of threads access them concurrently is a must [22], but it is
also a highly challenging task [10], especially if strong liveness
guarantees, such as wait-freedom, are to be provided [13]. Wait-
freedom is highly desirable as it ensures progress for all running
threads independently of their speeds or any crash failures that
other threads may experience. Specifically, wait-freedom ensures
that every operation on the data structure (executed by a running
thread) will complete within a finite number of steps. Lock-freedom
is a weaker progress condition which guarantees that at least one
thread makes progress, thus allowing other threads to starve.

A hash table is a data structure commonly used to implement
a dictionary of key-value pairs. It provides two update operations
(Insert and Delete) and a LookUp operation. A hash function
is used to associate keys to buckets so that each operation on the
hash table takes constant average time [14]. To ensure this property
even when the number of stored items varies over time, dynamic
hashing aims at dynamically resizing the hash table to adapt the
number of buckets to the number of items [4]. Resizing actions
(splitting or merging of buckets) are triggered during Insert and
Delete operations.

It is commonly acknowledged that, in most cases, LookUps are
by far the most frequent operations on a hash table [14, 23]. Given
that update operations are not frequent, resizing actions are rare
events since the number of items to store does not vary much over
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time. In theory, hashing can be made very efficient in a concur-
rent environment due to its natural parallelism [14]. In most cases,
concurrent operations access different parts of the hash table, and
thus they can proceed in parallel without any interference with one
another. However, the case of dynamic hashing is more complex.
Allowing hash table operations to be executed in parallel with resiz-
ing actions while ensuring linearizability [15], is difficult, especially
for algorithms providing strong progress guarantees [19, 21].

This paper presents a new wait-free implementation of a resiz-
able hash table. Our hash table aims at achieving best performance
for the most common operations on a hash table, while providing
wait-freedom progress guarantee. To guide our design, we identify
two design rules that are important to achieve high performance at
large core counts: (A) LookUp operations should always be allowed
to proceed without any synchronization; (B) when no resizing ac-
tions are executed, update operations applying to different buckets
should be allowed to progress fully in parallel (i.e., without any
interference with each other). These rules aim at preserving the
natural parallelism of hash tables in the most frequent case where
no resizing is required. Rule (A) additionally aims at minimizing
the cost of the most frequent operations in all cases.

To implement a hash table that complies with these design rules,
we propose an algorithm based on extendible hashing, a dynamic
hashing technique that considers keys as bit strings [5]. An ex-
tendible hash table can be seen as an array (the directory) of pointer
to fixed-size buckets. In its sequential implementation, every resiz-
ing operation is local, e.g., one bucket can be split into two without
modifying the other buckets.

Our wait-free extendible hash table relies on the PSim universal
construction [7]. PSim provides a general mechanism to implement
any concurrent object in a wait-free manner. It exploits the well-
known technique [6] of having a thread that executes an operation
help other announced operations by applying them, in addition
to its own, on a local copy of the simulated object state. Then, it
attempts to change a shared reference to the object state to point
to this local copy. PSim results in highly-efficient wait-free imple-
mentations of data structures that have a single or a small number
of points of contention, such as stacks and queues [7]. In this paper,
we show how we can use several instances of the PSim algorithm
and synchronize them appropriately to get an efficient wait-free im-
plementation of an extendible hash table. To match our design rules,
our hash table uses an instance of PSim’s algorithm for each bucket.
These instances run update operations on each bucket fully inde-
pendently as long as no resizing actions are required. An additional
instance of PSim’s algorithm is used to manage resizing actions
modifying the state of the hash table. The crux of our algorithm
is in the mechanisms used to coordinate the different instances of
PSim during resize actions in order to ensure linearizability and
wait-freedom, while complying with our design rules.
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We evaluate our algorithm experimentally and compare it with
that of two state-of-the-art lock-free concurrent hash tables: the
lock-free resizable hash table proposed by Liu et al. [19] and the hash
table based on a split-ordered list proposed by Shalev and Shavit [21].
Experiments run on two Intel processors (48-core Haswell, and 64-
core Broadwell) show that in a directory-stable state, i.e., when re-
sizing actions are rare, the performance of our algorithm is highly
competitive. When manipulating a small number of items, and
when the percentage of LookUps is high, our wait-free algorithm
outperforms the most efficient lock-free algorithm by up to 47%
on a 64-core machine. When the size of the hash table increases,
a modified version of the lock-free algorithm presented by Liu et
al. [19], that we propose, becomes the most efficient with our algo-
rithm being the second most efficient. The very high performance
of our algorithm in directory-stable states comes at the cost of
slower resizing actions. However, our experiments demonstrate
that the resizing cost is acceptable when it can be amortized over
long runs. In this case, our wait-free hash table is as efficient as or
more efficient than the best existing lock-free solutions.

The main contributions of this paper are summarized as follows:

• We present a new wait-free resizable hash table based on ex-
tendible hashing (Section 4). Its implementation follows two
design rules that aim at preserving the natural parallelism
of dynamic hashing for the most frequent operations.
• We provide an extensive performance evaluation of the new
algorithm at large core counts that shows that, when resizing
actions are rare, our wait-free hash table largely outperforms
all previous lock-free implementations (in terms of through-
put), at the cost of slower resizing (Section 6).

The results of our experiments show evidence that the design
rules we identify are of key importance to build efficient non-
blocking resizable hash tables.

2 RELATEDWORK
Hash tables are important data structures in domains ranging from
operating systems’ kernels [1, 23] to runtime and programming
languages [16].

The easiest way to implement a resizable hash table is probably
using locks, i.e., in a blocking way. One such implementation is
the ConcurrentHashMap provided in the Java concurrency.utils
library [18]. It uses a fixed number of locks, each of which guards a
subset of the buckets. Resizing can be performed only by a thread
that has acquired all locks, thus excluding all other threads from ex-
ecuting operations during a resizing phase. A concurrent extendible
hashing algorithm based on locks was presented by Ellis [3]. It is
based on a two-level locking scheme where a lock on the directory
must be grabbed first, before locking a specific bucket.

Non-blocking resizable hash tables are appealing because of
their stronger progress guarantees that have been shown to lead to
higher performance in several studies [10, 21]. One of the first lock-
free non-resizable hash table implementations was described by
Michael [20]. It is based on an array of lock-free linked lists. At the
same period, Greenwald [11] presented a lock-free resizable hash
table that relied on a DCAS (double-compare-and-swap) operation.
However, DCAS is not supported on most hardware architectures.

The lock-free resizable hash table proposed in [21], which we
will call LF-Split, relies on a split-ordered list. The items of the hash
table are stored in an ordered linked-list and a separate array of
pointers pointing to elements in the linked list plays the role of
the directory. The items belonging to bucket numbered i are all the
items accessible in the linked-list starting from the node pointed
to by entry i of the directory and finishing at the node pointed to
by the next entry of the directory. Hence, inserting a new element
in a bucket simply requires to insert it in the linked list. Splitting a
bucket into two only implies adding in the directory a new pointer
to an element in the list. Relying on a list to implement the hash
table makes resizing operations very efficient. However, LookUp
operations might be less efficient than with array-based hash tables
because of the cost of pointer chasing paid when iterating over
the elements of a bucket [2, 19]. LF-Split complies with neither of
the design rules we introduce to optimize directory-stable-state
performance. Indeed, rule (A) is violated because when a node is
marked for deletion, threads running LookUp operations might
have to help removing these nodes from the list. Moreover, a global
counter has to be updated when an item is removed or a new item
is inserted, which breaks rule (B). The experiments presented in
Section 6 show that these two facts limit the performance of LF-Split
when the directory is stable.

To the best of our knowledge, only two wait-free resizable hash
tables have been described thus far [8, 19]. The algorithm of Feld-
man et al. [8] is based on a multi-level array resulting in pointer
chasing and therefore reduced performance for LookUp operations.

Liu et al. have proposed in [19] an array-based resizable lock-free
hash table, which we will call LF-Freeze. Buckets are implemented
as arrays of items, and the directory is an array of pointers to items.
When the directory needs to be resized, the buckets are frozen:
no update operations are allowed to proceed on these buckets
anymore. Splitting the buckets is then lazily done during Insert
operations. LF-Freeze respects the two design rules that we have
defined. The experimental analysis on large multicore machines
that is provided in [19], shows that LF-Freeze outperforms LF-
Split [21]. Our algorithm shares some of the design ideas of LF-
Freeze. However, it ensures wait-freedom by using instances of the
PSim algorithm for ensuring synchronization.

Liu et al. also proposed in [19] a wait-free variant of their lock-
free implementation, which we will call WF-Freeze. In this variant,
threads should help each other running update operations and re-
size actions on the buckets. This is done by assigning sequence
numbers to all update operations, a technique that is implemented
using a globally shared counter (thus violating rule (B)). The ex-
periments in [19] show that WF-Freeze exhibits performance that
is by far lower than the performance of LF-Freeze. Our algorithm
ensures wait-freedom without using any globally shared counter.

Kogan and Petrank proposed in [17] the fast-path-slow-path
technique, an approach to get a wait-free variant of a lock-free
algorithm with a relatively small performance cost. In their ex-
perimental analysis, Liu et al. included a wait-free variant of their
lock-free algorithm based on this technique. The resulted algorithm
performs much better than WF-Freeze (their brute-force wait-free
solution), but its performance is lower than that of LF-Freeze (their
lock-free algorithm). Our evaluation shows that our brute-force
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Figure 1: An extendible hash table. The directory has a depth
of 3 and each bucket can store at most 2 items.

wait-free implementation outperforms LF-Freeze in several cases
when the hash table is in a directory-stable state.

3 EXTENDIBLE HASHING
An extendible hash table is a data structure of two levels. It consists
of a set of buckets, in each of which a fixed number b of items are
stored, and a resizable array, called the directory, where each entry
stores a pointer to a bucket. Extendible hashing manipulates hash
keys as bit strings: the bit strings are used to distribute items to
buckets. The directory has 2D entries, whereD is a parameter called
the depth of the directory. Figure 1 describes an extendible hash
table with D = 3. A prefix corresponding to the D most significant
bits of the hash key is used to associate items to directory entries
and the buckets they point to. For instance, in Figure 1, key 010000 is
associated with the directory entry 010. The depth of the directory
is at most as big as the total number of bits in the hash key. The
size of the directory is always exponential to its depth.

In practice, the number of buckets does not have to be the same
as the number of directory entries: to improve memory efficiency,
it is adapted to the number of items to store. In Figure 1a, a single
bucket is allocated to store all keys with prefix 1 since there is no
such key, and all four directory entries with prefix 1 point to that
bucket. The depth of this bucket is 1, i.e., it equals the length of the
prefix that identifies the hash keys that are to be stored in it.

As illustrated in Figure 1b, a bucket is split in two buckets when
it is full (i.e., when it already contains b items) and a newly inserted
itemmust be stored in this bucket. For instance, to insert key 010110,
two new buckets 010 and 011 should be created to replace the
existing bucket 01. In this case, the directory will not be resized
because the bucket with prefix 01 has depth 2 and the two newly
created buckets to replace it, have depth 3 which is smaller than
or equal to the directory depth. However, to insert another item
010111 in the table of Figure 1b, resizing the directory would be
required. The depth of the directory should be increased to 4 to
allow storing the pointers of two new buckets 0100 and 0101. We
remark that the resizing actions are local: to replace a bucket with
two new buckets, all the items of the old bucket are stored in the
new buckets and no additional elements are stored in them.

4 A WAIT-FREE IMPLEMENTATION OF AN
EXTENDIBLE HASH TABLE

This section presents the new wait-free implementation of the
extendible hash table. We start by describing the main ideas of the
algorithm. Then, we present how the hash table works when no
resizing occurs. Finally, we provide the details of resizing. Our wait-
free algorithm incorporates and builds upon the code of PSim [7]
for updating the buckets and the directory.

In our implementation (as well as in the experimental analysis of
Section 6), an invocation of Insert for an already existing key, up-
dates the value associated with the key. This semantics correspond
to that of dictionaries provided by popular programming languages
such as Java1 or Python2. The description assumes that a wait-free
garbage collector is available. (Section 5 provides a discussion on
memory reclamation.) We consider a system of n threads.

4.1 The algorithm in a nutshell
Figure 2 presents the structure of our hash table and describes how it
evolves when update operations are executed. The main challenge
when designing a resizable hash table is allowing operations of
the hash table to be executed in parallel with resizing actions. To
this end, our algorithm uses two levels of indirection between the
DState object that implements the directory and the BState objects
that store the items of buckets (see Figure 2a). In a BState object,
items are stored in a fixed size array (in Figure 2, this size is 2).
The data records used to implement our hash table are presented
in Figure 3. To distinguish a variable that stores a reference to an
object, we add the suffix _p to its type.

To insert a new element into a non-full bucket in a wait-free man-
ner, a thread creates a local copy of the corresponding BState. It
applies its operation on this local copy and uses a CompareAndSwap
(CAS) operation to attempt to update the BState pointer in the
corresponding bucket to point to its local BState object (see Fig-
ure 2b). If the corresponding bucket is full, it will be replaced by
two new buckets to complete the Insert. This case is illustrated in
Figure 2c. The directory, i.e., the DState object, must be updated to
store references to the new buckets. To perform the update on the
directory state in a wait-free manner, a thread first creates a local
copy of the currently active DState object (pointed to by the shared
variable ht). Note that this copy contains pointers to the existing
buckets. The thread can then create the new buckets from the full
bucket (buckets 00 and 01 from bucket 0 in Figure 2c), update its
local DState object accordingly, and finally, try to make its local
DState object the active DState object by updating ht using CAS.

The algorithm has to ensure that update operations are not lost if
they run concurrently with a resizing action that requires replacing
the current DState object. Thus, our algorithm has to handle the
following two cases that might arise during the creation of a new
DState object: (i) no update should be lost if a pointer to a bucket
is replaced with pointers to new buckets in the new DState object,
and (ii) no update targeting the non-full buckets should be lost, i.e.,
the non-full buckets must still be referenced by the new DState
object. To prevent the appearance of the first case, our algorithm
ensures that (1) a bucket is split only if it is full and (2) no update
1Package java.util.AbstractMap
2https://docs.python.org/3/library/stdtypes.html#dict

https://docs.python.org/3/library/stdtypes.html#dict
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Figure 2: Operations on the wait-free extendible hash table.
(The new objects created during an operation are grayed)

operation (not evenDelete) is executed on a full bucket. To prevent
the second case from occurring, our algorithm employs two levels
of indirection between a DState object and the BState objects.
Assume that a BState object is updated as shown in Figure 2b,
while the DState object pointing to this bucket is also updated (as
shown Figure 2c). In this case, the new DState object will still point
to the previously existing Bucket objects that are not split (i.e., that
are not full). Thus, even if the BState reference stored in a Bucket
changes, it will still be accessible through the new DState object.

Resizing the directory is requiredwhen its depth becomes smaller
than the depth of new buckets that are created during an Insert
operating on a full bucket. In this case, after creating a local copy
of the currently active DState object (i.e., after copying all pointers
to buckets locally), the thread executing the Insert must create a
new DState object of larger depth, and copy the existing bucket
references into it. Figure 2d illustrates this case.

In the following sections, we provide the details of our algorithm.
We discuss how update operations on DState and BState objects
are implemented in a wait-free manner, as well as how they are
synchronized to ensure linearizability.

4.2 Data structures for the resizable hash table
implementation

Recall that the data records used to implement our hash table are
presented in Figure 3. Part of the Bucket state is stored in a BState
record. This part is copied by every thread that wants to apply an
atomic update on the bucket. Each Bucket record, as well as each
BState record includes a bit vector of size n (called toggle and
applied, respectively) that are used to efficiently track the pending
operations on a bucket. A BState record also stores an array, called
Result, that is used to store the results of active operations. (We
describe how these fields are used in more detail in the subsequent

1 struct Operation:
2 type : {I N S , DEL}
3 key : integer
4 value : integer
5 seqnum : integer

7 struct Result :
8 status : {TRU E , FALSE , FAIL}
9 seqnum : integer

11 struct DState:
12 depth : integer
13 dir [2depth ] : Bucket_p

16 struct Bucket:
17 pref ix : bit−string
18 depth : integer
19 state : BState_p
20 toддle[n] : boolean

24 struct BState :
25 items : set of key−value pairs
26 applied [n] : boolean
27 r esults[n] : Result

Figure 3: Data structures definitions (for n threads).

28 Shared variables :
29 ht : DState_p
30 help[n] : Operation_p

31 Persistent private variable :
32 opSeqnumi : integer

Figure 4: Variables for thread Ti .

sections.) The fixed size array3 used to store the items associated
with a BState is called items . In the following, we use the notation
items[key] to set or get the value associated with one key. The hash
table is represented by a record of type DState that is composed of
an array of references to elements of type Bucket and a variable
depth storing the depth of the directory.

The shared variables and the private persistent variables for
each thread are provided in Figure 4. Each operation initiated by
a process i is announced in element i of the shared array help. A
per-thread sequence number (opSeqnumi ) is introduced but it will
only become useful when discussing resizing in Section 4.4.

4.3 The case of no resizing
This section describes how Insert and LookUp work when no
resizing is required. Figure 5 provides code for Insert and LookUp.
Delete is implemented in the same way as Insert.

As described in Section 4.1, to insert an item in a non-full bucket
b, a thread must update the corresponding BState. This is done in
ApplyWFOp(). Note that the thread executes other pending updates
on the bucket (in addition to its own), leveraging the core idea of
PSim. Specifically, the thread first announces its operations (lines 40
and 50). Then it tries to apply its operation, as well as all other
pending operations for bucket b, on a local copy newb of the bucket
state (lines 52-60). Finally, it executes a CAS to make this updated
state the new value of b .state (line 61). When a thread executes an
operation on behalf of another thread, it stores the result of this
operation in newb .results so that the other thread can find there
the result of its operation (line 47).

3The size of the array equals the maximum number of elements a bucket can store. To
look for a key, a thread has to iterate over all elements currently stored in the array.



33 def Lookup(integer key): (boolean, integer)
34 htl← ht ⋆
35 bs← htl.dir[Prefix(key, htl.depth)].bstate
36 return ((key ∈ bs.items) ? (TRUE, bs.items[key]) : (FALSE, −1))

38 def Insert(integer key, integer value): boolean
39 opSeqnumi ← opSeqnumi+1 ⋆
40 help[i]← new Operation(I N S , key, value, opSeqnumi )
41 htl← ht ⋆
42 ApplyWFOp( htl.dir[ Prefix(key, htl.depth) ] )
43 htl← ht ⋆
44 if htl.dir[ Prefix(key, htl.depth) ].state.results[i].seqnum != opSeqnumi : ⋆
45 ResizeWF() ⋆
46 htl← ht ⋆
47 return htl.dir[ Prefix(key, htl.depth) ].state.results[i].status

49 def ApplyWFOp(Bucket_p b):
50 Flip(b.toggle, i) # change the value of bit i

51 for k in 1..2:
52 oldb← b.state
53 newb← New BState(oldb) # create a copy of object oldb

54 t← b.toggle
55 for j in [ tid for tid in 1..n if t[tid] != newb.applied[tid] ]:
56 if newb.results[j].seqnum < help[j].seqnum: ⋆
57 newb.results[j].status← ExecOnBucket(newb, help[j])
58 if newb.results[j].status is not FAIL: ⋆
59 newb.results[j].seqnum← help[j].seqnum ⋆

60 newb.applied← t
61 CAS( b.state, oldb, newb)

63 def ExecOnBucket(BState_p b, Operation_p op): status
64 if b.items is full:
65 return FAIL
66 else:
67 exist← (op.key ∈ b.items)
68 if op.type == I N S :
69 b.items[op.key]← op.value # updates or inserts

70 return !exist
71 else:
72 delete b.items[op.key] # does nothing if key not present

73 return exist

Figure 5: Code of Insert and LookUp operations (lines
marked with the ⋆ symbol are required only to implement
resizing).

To identify pending updates on a bucket, the toggle vector of
the Bucket and the applied vector of the corresponding BState
are used. To announce an update operation op on a bucket b, a
thread Ti flips its bit in b .toддle (line 50) in an atomic way. Hence,
if a bit j has different values in b .toддle and b .state .applied , then
thread Tj has a pending operation. Note that Ti announces op in
help[i] before flipping its bit in b .toддle .

AfterTi has executed the body of the loop on lines 51-61 twice, it
is guaranteed that the operation of threadTi has been executed [7]:
If bothTi ’s CAS operations fail (line 61), it means that another thread
Tj has run an iteration of this loop and has executed a successful
CAS between Ti ’s first and second CAS step. Since an iteration exe-
cutes all pending operations and thread Ti had registered its own
operation before executing its first CAS step (line 50), Tj has ap-
plied the operation of thread Ti . So, after executing it second CAS
step, Ti can read the result of its operation in the corresponding
entry of the result array of the active BState (line 47). The function

ExecOnBucket() (lines 63-73) is called to (sequentially) execute an
update operation on a local copy of a bucket state.

Complying with design rule (A), LookUp operations (line 33) do
not require any synchronization, i.e., they execute a code that is
exactly the same as their sequential code independently of whether
the buckets they are directed at are being resized when they are
executed. Doing so does not violate linearizability because when a
thread makes a copy of the current BState to apply an update to it,
it copies the set of items as part of this state. Therefore, the bucket
states are immutable, allowing to access them safely without syn-
chronization. Performing this copy has a cost for update operations.
However, it allows for very efficient LookUp operations which are
the most frequent operations performed on a hash table.

To access a bucket (e.g., line 35), a thread first stores a copy of ht
in local variable htl (lines 34, 41, 43, and 46). This is needed because
ht .dir and ht .depth should refer to the same DState. This might
not be the case without copying the reference stored in ht locally,
given that ht may be concurrently updated by resizing actions.

4.4 Resizing the hash table
Figure 6 describes the operations required to resize the hash table,
i.e., to split each of the full buckets into two buckets, as well as to
increase the size of the directory. We defer the discussion of bucket
merging to Section 4.5.
Updating the directory.When an Insert operation fails because
a bucket is full, the calling thread runs the ResizeWF() function
(line 45). The algorithm executed by ResizeWF() follows the same
basic principle as that executed by ApplyWFOp(). All threads will-
ing to apply a resize action (here splitting a full bucket) will run
two iterations of a loop where they will first make a local copy of
the directory (line 119), then apply the required modifications on
their local copy, and finally try to make their local copy the active
state of the directory using a CAS instruction (line 124). However,
there is no need to use bit vectors to determine the actions to be
executed on the directory: all such actions will be resizing actions.

Making ApplyWFOp() and ResizeWF() wait free is not enough
to ensure that Insert is wait free. We need to also ensure that a
thread calls these functions a bounded number of times to complete
an Insert. To this end, special care should be given to pending resize
actions and pending update operations during resizing. A pending
resize action is a resize action that must be performed in order for a
pending update on a bucket to complete. Specifically, (i) a thread
running a resize action has to execute all pending resize actions
on the current state of the hash table, and (ii) when creating a new
bucket, a thread has to execute all pending update operations on
the newly created bucket. We explain the necessity of each of these
two special actions in the next two paragraphs.

Consider the case where two threads,T1 andT2, need to execute
ResizeWF() to complete an Insert operation each, on distinct
buckets. Assume that T1 needs to split bucket ba and T2 needs to
split bucket bc to complete their operations. If T1 tries to update
the directory in parallel with T2, without executing the split of
bucket bc , there is a chance that only T1 will manage to make its
new computed state active using CAS (line 124), requiring T2 to
run again its resize action. The second time, a thread T3 could be
trying to split a bucket bd in parallel withT2 splitting bc , and make



74 def SplitBucket(Bucket_p b): (Bucket_p, Bucket_p)
75 b0← new Bucket(b) # copy of bucket b

76 b0.depth← b.depth + 1
77 b0.prefix← b.prefix << 1 # bucket with prefix B1B2B3 ...0
78 b0.state← new BState() # new empty BState

79 b0.state.results← b.state.results #copy if the results array of b

80 b0.state.applied← b0.toggle
81 b1← new Bucket(b0)
82 b1.prefix← b0.prefix + 1 # bucket with prefix B1B2B3 ...1
83 for (k,v) in b.state.items: # insert the key-value pairs in new BStates

84 if Prefix(k, b0.depth) == b0.prefix:
85 b0.state.items[k]← v
86 else:
87 b1.state.items[k]← v
88 return b0, b1

90 def DirectoryUpdate(DState_p d, Bucket_p blist[]):
91 for b in blist:
92 if b.depth > d.depth: # doubling directory size is required

93 alloc d.dir with size 2d .depth+1
94 copy all Bucket_p from previous dir to new d.dir
95 d.depth← d.depth + 1
96 #compute the set of directory entries that should point to b

97 entries← {e for e in 1..2d .depth if Prefix(e, b.depth) = b.prefix}
98 for e in entries: # insert b in all required entries of d.dir

99 d.dir[e]← b

101 def ApplyPendingResize(DState_p d, Bucket_p bFull):
102 for j in 1..n:
103 if Prefix(help[j].op.key, bFull.depth) == bFull.prefix:
104 if bFull.state.results[j].seqnum < help[j].seqnum:
105 # help[j] is a pending request that was applying to bFull

106 # bDest is the destination of help[j] in the current state

107 bDest = d.dir[ Prefix(help[j].op.key, d.depth) ]
108 while bDest is full:
109 (b0,b1)← SplitBucket(bDest)
110 DirectoryUpdate(d, (b0, b1))
111 #update bDest based on the new state of the directory

112 bDest← d.dir[ Prefix(help[j].op.key, d.depth) ]
113 bDest.state.results[j].status← ExecOnBucket(bDest, help[j])
114 bDest.state.results[j].seqnum← help[j].seqnum

116 def ResizeWF():
117 for k in 1..2:
118 oldD← ht
119 newD← new DState(oldD) # copy of object oldD

120 for j in 1..n: # iterates over operations in help

121 b← newD.dir[ Prefix(help[j].op.key, newD.depth) ]
122 if b is full and b.state.results[j].seqnum < help[j].seqnum:
123 ApplyPendingResize(newD, b)
124 CAS(ht, oldD, newD)

Figure 6: Code for the Resizable Hash Table.

T2 fail again. As such a scenario could keep happening, a thread
that executes ResizeWF() executes all pending resize actions in
the current state of the directory in order to ensure wait-freedom.

Consider now the following scenario where multiple threads run
Insert on a single bucket that is to be split. Assume that a threadT1
applies an Insert on a full bucket b and so it calls ResizeWF(). At
this time, it experiences some delay and in the meantime another
thread T2 executes resizing actions and replaces the full bucket
b with two new buckets. Thread T1 would now have to apply its
Insert operation on one of the newly created buckets. However,

suppose that other threads applied Insert operations in the mean-
time, so that this new bucket is full again. In this case, the operation
of threadT1 would fail again andT1 would have to execute another
resize action using ResizeWF(), with the risk that the same thing
would happen again. To prevent such a scenario, a thread creating
a new bucket executes all pending updates directed to this bucket.
Executing each operation exactly once. Since Insert opera-
tions may be executed through two different paths, namely during
the execution of ApplyWFOp() (line 57) or during the execution of
ApplyPendingResize() (line 113) which is called by ResizeWF()
(line 123), we need a way to figure out when an operation has
already been executed or is still pending. To this end, we use a
per-thread sequence number opSeqnum. A thread Ti tags each up-
date operation it executes with a distinct sequence number (line
40). When an operation of Ti has been successfully executed on
a bucket b, its sequence number is copied into the entry i of the
results array associated with b .state , i.e., results[i].seqnum is
the sequence number of the last update executed by Ti on b.

The sequence number of the operations announced in help[j]
(for some j) targeting a bucket b is compared to the corresponding
entry b.state.results[j].seqnum to determine whether the op-
eration is pending. This test is made both in ApplyWFOp() (line 56)
and in ApplyPendingResize() (line 104) to decide which opera-
tions to execute on the bucket.

Note that in ApplyWFOp(), a thread cannot solely rely on the
toggle vector of the bucket to decide which operations to execute
(line 55). Indeed, since a thread starts an update operation by reg-
istering its operation in the help array (line 40), there is a chance
that its operation would be executed during a resizing action even
before it calls ApplyWFOp() and flips its bit in the toggle vector
(line 50). As such, the only safe way to identify pending updates
is using the sequence numbers. The toggle vector associated with
each bucket is used to improve performance: It allows to identify
very fast potentially pending updates without having to read the
whole help array in ApplyWFOp().
Detailed description of the resizing algorithm. We now de-
scribe the ResizeWF() function in detail. After making a local copy
of the directory state, a thread iterates over the help array to find
pending resize actions (lines 120-122); specifically, the thread looks in
help for pending update operations that apply to a full bucket. For
each pending resize action, the thread calls ApplyPendingResize()
with the corresponding bucket, bFull , as parameter.

In ApplyPendingResize(), a thread should run all pending up-
dates that are to be applied to bucket bFull . To this end, it iterates
over the help array to find the pending operations that apply to
bFull (lines 102-104). For such an operation, it selects the bucket
bDest on which the operation should be applied in the current local
directory state (line 107). As long as bDest is full, it splits bDest into
two bucketsb0 andb1 (call to SplitBucket() line 109), updates the
directory with the two new buckets calling DirectoryUpdate()
(line 110), and updates bDest based on the new state of the direc-
tory (line 112). Finally, it executes the pending operation on bucket
bDest and updates the sequence number in bDest .state .results ac-
cordingly (lines 113-114).

We remark that bDest can be different from bFull when execut-
ing line 107. The first operation applied onbFull will splitbFull and



replace it by non-full buckets. Hence, for other operations target-
ing bFull , bDest should be set to point directly to the appropriate
newly created bucket. Note also that buckets might have to be split
several times before completing a single Insert operation (lines
108-112). The reason is that when one full bucket b is split into two
new buckets b0 and b1, there is a chance that all items stored in b
should be moved to just one of the two new buckets. For instance,
in Figure 1b, when splitting bucket 010, all items will be stored in
bucket 0100, which thus should be split again.

Function SplitBucket() takes, as a parameter, a reference to
a bucket b of depth D with prefix "B1B2 . . . BD " and returns refer-
ences to two new buckets b0 and b1 of depth D + 1, with prefixes
"B1B2 . . . BD0" and "B1B2 . . . BD1". Key-value pairs stored in the
BState of b are copied to the BState of b0 and b1 based on their
prefix (lines 83-87). We recall that since b is full, the algorithm guar-
anties that its BState is immutable. Note also that b .state .results
is copied in b0’s and b1’s state (line 79) so that the results of opera-
tions previously applied to b are also available through b0 and b1.
Finally, for each new bucket, its applied vector is initialized to be
equal to its toggle vector (line 80): since all pending updates on the
bucket are executed by the ApplyPendingResize() function, and
since the bucket is not visible to other threads as long as the CAS
instruction that updates the active directory has not been executed
(line 124), its toggle vector should reflect no pending operations.

DirectoryUpdate() inserts in the directory the new buckets
generated by SplitBucket(). The function doubles the size of the
directory if needed, and stores the references of the new buckets
in the appropriate entries of the directory. Although we do not
detail all steps to be executed to double the size of the directory,
the two main steps are: (i) allocating a new array corresponding
to the new size of the directory (line 93), and (ii) copying all the
bucket references from the previous array to the appropriate entries
of the new array (line 94). Note that a new bucket might have to
be inserted in more than one entry if the depth of the directory if
bigger than the depth of the bucket (lines 97-99).
Avoiding losing updates.Our algorithm allows update operations
on non-full buckets to run concurrently with resize actions. As
pointed in Section 4.1, the two levels of indirection between the
DState objects and the BState objects storing items ensure that
updates are not lost in this case. Indeed, when a thread creates
a new directory state during resizing, it copies the references of
all existing buckets (line 119) in the new state. Since applying an
update on a bucket b only modifies the BState reference stored
in b .state (line 61), the newly created directory state will allow
accessing the concurrently updated BState objects.

Note that since resizing requires full buckets to be immutable
to avoid losing updates when running SplitBucket(), Delete
operations must not be executed on a full bucket (lines 64-65).
Compliance with the design rules. The described algorithm
complies with the two design rules we have previously defined.
(A) LookUp operations are executed without ever requiring any
synchronization. The LookUp implementation is equivalent to a
sequential implementation. (B) When no resize action is running,
an update operation is executed by the instance of PSim of the cor-
responding bucket (function ApplyWFOp()) fully in parallel with
operations applying to other buckets. The use of per-thread se-
quence numbers does not impair execution parallelism.

4.5 Merging buckets and shrinking the
directory

We now provide a high level description of how our implementation
copes with merging and shrinking. Merging buckets and shrinking
the directory should both be run through the ResizeWF() function.
Shrinking the directory can be implemented in the same way as
doubling its size is done. Merging buckets is more complex. The
basic idea is the same as for splitting: no update operations should
be allowed to execute on buckets that can be merged (in order
to avoid violating linearizability). However, there are two main
differences between merging and splitting: (i) merging is applied
to non-full buckets, and (ii) it involves more than one bucket.

To address the first point we use a mechanism to freeze a bucket,
similarly to what is proposed in [19]. No update operations can
be run on a frozen bucket even if it is not full. Instead, the thread
willing to run an update operation on a frozen bucket should help
running the merging action first. We have implemented freezing
using a flag that is stored in the bucket state. The flag is modified
by a thread using ApplyWFOp(). To address the second point, we
perform merging in two steps: first, a thread tries to freeze all
buckets involved in the merging, and then it calls ResizeWF() to
perform the merging action.

Note that since the merging of buckets is done in several steps, it
may fail: a thread may not manage to freeze all buckets involved in
the merging action. The first reason why a thread may fail to freeze
a bucket is that the bucket might be full. The second reason is that
the bucket might be already frozen, e.g., because it is involved in
another merging action. This might happen if two threads want
to execute conflicting merging actions, for instance, one wants to
create a bucket with prefix 001 and the other with prefix 0010. Since
the two new buckets have a common prefix, the twomerging actions
involve overlapping sets of buckets. One of the two threads will not
manage to freeze all required buckets for its action to take place. We
remark that to avoid having both conflicting merge actions fail, all
threads should freeze buckets in the same order. If a merge action
fails, some buckets might have to be unfrozen. This operation is
done during a directory update through the ResizeWF() function.
It is determined by the user when merging will be triggered.

4.6 Corrrectness and Progress
When no resizing occurs, linearizability is proved following similar
arguments as those used to prove PSim correct. When resizing oc-
curs, we prove that: (1) each operation is executed exactly once, and
(2) once an update operation has been executed, its modifications
cannot be lost due to resizing. Due to lack of space, the full proof
of correctness will be provided in the full version of the paper.

LookUp operations are obviously wait-free. Each Insert oper-
ation calls at most two functions (ApplyWFOp() and ResizeWF())
that implement PSim. Since PSim is wait-free, it remains to show
that functions called by these two functions execute a bounded
number of instructions. PSim creates a copy of the state to ma-
nipulate. Hence, the code executed by any instance of PSim is
sequential. Note that functions ExecOnBucket(), SplitBucket()
and DirectoryUpdate() execute a bounded number of instruc-
tions. ApplyWFOp() calls ExecOnBucket() at most n times. So, the
total number of executed instructions is bounded in this case.



The loops at lines 120 and 102 imply that the upper bound on
the number of calls to ApplyPendingResize() by ResizeWF() is
O(n2). The number of instructions run by ApplyPendingResize()
is bounded by the number of times a bucket should be split in order
to apply its pending operations. We conclude that the total number
of instructions executed is bounded.

5 IMPLEMENTATION
The description provided in Section 4 assumes that a garbage col-
lector (GC) is available. As pointed out in previous studies [2, 10],
memory management can have a severe impact on the performance
of concurrent data structures. So, we paid special attention to this is-
sue while we were implementing our algorithm. Specifically, we use
an epoch-based non-blocking garbage collector [9]. It is based on
thread-local counters that are incremented when a thread performs
an operation. The value of these counters are checked periodically
to decide when some released memory can safely be reused. The
frequency at which counters are checked depends on the size of the
thread-local batches that are used to store references to elements
that have been released: when a batch becomes full, the counters
are checked to see if previous batches can be released.

Our implementation has to be able to efficiently allocate bucket
states (BState) since any update operation requires the allocation
of a new BState record. We implemented thread-local memory
pools (heaps) that are optimized to allocate memory blocks of the
size of a BState record. We also implemented a mechanism to allow
memory that has been released by the GC to be inserted back in
these thread-local heaps.

To further improve the performance of our algorithm in practice,
we apply an optimization to reduce the size of BState objects.
Namely, we reduce the size of the results array by storing the
actual results of the operations in a separate shared array and
storing in the BState an array of integers corresponding to indices
in this shared array. To obtain the result of its executing operation,
a thread i should read results[i] in the BState, and then access
the appropriate element of the shared array. This shared array is
divided to non-overlapping blocks, one for each thread, so that each
thread writes to its own block (with no need for synchronization).

We implemented the toggle vectors so that bits can be flipped
efficiently using atomic Add (see [7]). Note also that when the CAS
of lines 61 is successful, ApplyWFOp() can return immediately.

6 PERFORMANCE EVALUATION
6.1 Evaluated algorithms
We implemented our algorithm and the memory management com-
ponent in C. The implementation allows activating or deactivating
the use of local heaps for memory allocation. Our algorithm is
called WF-Ext hereafter.

We compare the performance ofWF-Extwith the performance of
the lock-free implementations presented by Shalev and Shavit [21]
(called LF-Split) and by Liu et al. [19] (called LF-Freeze). LF-Split
is the reference implementation of the algorithm by Shalev and
Shavit available online4. LF-Freeze is the C version of the code
provided by the authors5. To ensure a fair comparison, we also
4http://www.memoryhole.net/kyle/2011/06/02/
5https://github.com/mfs409/nonblocking/tree/master/tsx_acceleration/chash

created modified versions of these algorithms. A modified version
is identified with the suffix -U. Specifically, for LF-Split, we removed
the global counter, used for resizing decisions, that is accessed at
the end of the execution of each update operation. Instead, resizing
decisions are taken based on the size of individual buckets. For
LF-Freeze, the original version of the authors only stored keys. We
modified it to store key-value pairs. Also, in the original version,
inserting a key that is already present implies no modification of
the hash table. In our modified version, the value should be updated
to comply with the semantics of the operations we described in
Section 4. Note that this has a big impact on the performance results
because with this semantic no Insert boils down to a LookUp (This
explains the differences between our graphs and the ones presented
in [19]). Starting from thesemodified versions, we also implemented
a version of each algorithm that uses our memory management
component (marked with suffix -M). LF-Freeze-M uses fixed-size
buckets (instead of varying size buckets) to better leverage our local
heaps. In its original implementation, LF-Split relies on the system
memory allocator, while LF-Freeze relies on its own epoch-based
GC and does not use local heaps.

Our evaluation also includes a simple blocking non-resizable
hash table (called Lock) where each bucket is protected using a lock
and each operation on the bucket has to acquire this lock.

6.2 Experimental setup
We have performed experiments in two multiprocessor architec-
tures: a 48-core machine equipped with 4 Intel Haswell-EX E7-
4830-v3 processors and a 64-core machine equipped with 4 Intel
Broadwell E7-4850-v4 processors. All experiments showed similar
performance behavior in both machines. Hence, we only present
the results of our experiments on the larger and newer 64-core
machine. This machine features 256GB of RAM distributed over 4
NUMA nodes. The operating system is Linux with kernel 4.9.9 and
the compiler is gcc 5.4. All codes are compiled at the maximum
level of optimization. All tests were run 8 times with a 5-second
duration per test. We present the average throughput over all runs.

As discussed in other studies, the underlying memory allocator
has a big performance impact. All evaluations were run with two
allocators: the glibc allocator and the TCMalloc allocator6. For each
experiment and each algorithm, we display results for the allocator
that provides the best throughput. Information about the selected
allocator is provided in the legend of the graphs: "G" for the glibc
allocator and "T" for TCMalloc. We also test the two main NUMA
policies for physical memory allocation, that is local (named "L" in
graphs’ legends) and interleave (named "I"), and display the best
result. The NUMA policy is enforced using the numactl program.

Several parameters can be configured for each algorithm, namely,
the bucket size, the size of the batches used to store released mem-
ory records before running the Garbage Collector (GC), and the
size of the thread-local heaps. We performed a wide range of ex-
periments to identify parameters that suits all algorithms. We use
these parameters throughout all experiments: buckets of size 8, GC
batches of size 256, thread-local heaps of size 8.

Finally, in all experiments, the operations to be executed, as
well as their parameter (the key), are randomly selected using the

6http://goog-perftools.sourceforge.net/doc/tcmalloc.html

http://www.memoryhole.net/kyle/2011/06/02/
https://github.com/mfs409/nonblocking/tree/master/tsx_acceleration/chash
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
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Figure 7: Directory-stable state throughput in the Intel 64-
core machine using 1K items. No local heaps.

TinyMT7 pseudo-random number generator. This generator pro-
duces numbers with a uniform distribution.

6.3 Directory-stable performance
First, we study the performance of hash tables in the most common
scenario, that is, when resizing is rare. More specifically, we evaluate
the throughput of the implementations starting from a hash table
where we have already inserted key-value pairs corresponding to
half of the keys manipulated during the experiment and we run
workloads with the same amount of Delete and Insert operations.

Our first test uses 1K keys. Figures 7a and 7b correspond to loads
with 50% and 90% of LookUp operations, respectively. The rest of
the operations are equally divided between Insert and Delete.
The figures compare the performance of our wait-free algorithm
with the performance of the two modified lock-free algorithms LF-
Split-U and LF-Freeze-U, when relying on the underlying system
memory allocator (glibcmalloc or TCMalloc) for memory allocation.
We choose to display LF-Split-U because it constantly outperforms
the original LF-Split algorithm (which confirms the importance of
rule (B)). We choose to display LF-Freeze-U because a comparison
with LF-Freeze would not be fair due to the differences in the
implementation of Insert (see Section 6.1).

In Figure 7, our hash table outperforms the two lock-free al-
gorithms. The high throughput of our algorithm is mostly due to
highly efficient LookUpṪhis is confirmed by the large improvement
observed when increasing the percentage of LookUps to 90%. We
attribute the lower performance of the two lock-free algorithms to
different factors. Specifically, for LF-Split-U, the reason is twofold:
(i) the algorithm does not comply with design rule (A), implying less
efficient LookUp operations in this case; (ii) the buckets are imple-
mented as lists of items, which makes item search less efficient than
with buckets implemented as arrays. In the case of LF-Freeze-U the
main reason we identified for the lower performance is that the
bucket size is not fixed. It is adapted to the number of items to store.
Since a new bucket should be allocated for each update operation, it
creates an unfriendly workload for the memory allocation system.

Figure 8 presents the same experiment as in Figure 7, this time
using both our GC and the local heaps for all non-blocking algo-
rithms (-M suffix). This figure shows that even when compared
using the exact same memory management component, WF-Ext

7https://github.com/MersenneTwister-Lab/TinyMT
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Figure 8: Directory-stable state throughput in the Intel 64-
core machine, using 1K keys. With local heaps.

is more efficient than the lock-free algorithms. In this experiment,
with 90% LookUps, our algorithm is up to 47% better than the second
best non-blocking algorithm. Still, the performance of LF-Freeze-M
shows that using our memory management component and fixed-
size buckets greatly improves the performance of LF-Freeze. On
the other hand, LF-Split does not benefit from using local heaps.

To assess the performance of our algorithmwhen storing a larger
number of items, Figure 9 presents the same experiment as in
Figure 8, this time when keys are selected among 256K keys. For the
sake of completeness, we present the performance of two versions
of each lock-free algorithm. For LF-Split, we present the original
version and LF-Split-U (LF-Split-M is not considered because it does
not reach the performance of LF-Split-U). For the other algorithm,
we present both LF-Freeze-U and LF-Freeze-M.

Compared to the algorithms described in the related work (origi-
nal algorithms or -U versions), the performance of our algorithm is
again by far the best. It even outperforms the lock-based hash-table
when the percentage of LookUps is high. The high performance of
LF-Freeze-M demonstrates that the algorithm proposed by Liu et al.
can benefit from the modifications we suggest to efficiently manage
memory allocation. Once memory management issues are solved,
LF-Freeze-M outperforms WF-Ext because its update operations
are less complex since it implements a weaker progress condition.

The fact that WF-Ext outperforms all lock-free implementations
when the hash table has a small number of buckets can be sur-
prising, especially since existing wait-free resizable hash tables
are performing much worse than their lock-free counterparts [19].
This result is due to the use of the PSim universal construction [7].
Indeed, PSim performs especially well on contented objects since
it employs the technique of combining the operations of different
threads that are applied to the same object [12].

6.4 Resizing efficiency
To evaluate resizing performance, we run a test where the hash
table starts with only 2 buckets. Multiple threads start inserting
items randomly, and we measure the time it takes for the hash
table to reach its final size. To have a more realistic workload,
threads also execute LookUp operations on the items with a 50%
probability. Figure 10a presents the results. Note that to make the
figure readable, we use log scales on both axis.
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Figure 10: Performance with Resizing. Tests with 64 threads

The figure shows that the resizing performance of our algorithm
is much lower than that of evaluated lock-free algorithms. However,
the experiment of Figure 10b illustrates that WF-Ext still performs
well under resizing, if the cost of resizing is amortized over long
runs. In this experiment, we evaluate the throughput on a 5-second
run when starting from a hash table with 2 buckets and manipulat-
ing 1K items in a load with 90% LookUp and 10% Insert operations.
In this case,WF-Ext reaches the same throughput as when resizing
actions are rare (Figure 8b). Thus, in sufficiently long runs the per-
formance impact of resizing is not significant. We note that LF-Split
achieves much better performance than in previous experiments.
Indeed, in this test, LookUps for LF-Split are more efficient since
no item is ever deleted, confirming the validity of design rule (A).

7 CONCLUSION
This paper presents a resizable wait-free hash table based on ex-
tendible hashing. The design of our algorithm is based on two
design rules that aim at preserving the natural parallelism of con-
current hashing in the most common case, that is, when no resizing
action occurs. Leveraging several instances of the PSim universal
construction to ensure wait-freedom, our implementation achieves
unprecedented performance for a wait-free resizable hash table.
More generally, our approach provides a new trade-off in the per-
formance of resizable hash tables. Namely, experiments run on large
multicore architectures, show that, at the cost of more expensive
resizing actions, our algorithm largely outperforms lock-free hash
tables described in related studies when resizing actions are rare,
while providing a stronger progress guarantee.
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