
LogFlow: Simplified Log Analysis for Large Scale Systems
Marc Platini

University Grenoble Alpes, ATOS
marc.platini@atos.net

Thomas Ropars
University Grenoble Alpes

thomas.ropars@univ-grenoble-alpes.fr

Benoit Pelletier
ATOS

benoit.pelletier@atos.net

Noel De Palma
University Grenoble Alpes

noel.depalma@univ-grenoble-alpes.fr

ABSTRACT
Distributed infrastructures generate huge amount of logs that can
provide useful information about the state of system, but that can
be challenging to analyze. The paper presents LogFlow, a tool to
help human operators in the analysis of logs by automatically con-
structing graphs of correlations between log entries. The core of
LogFlow is an interpretable predictive model based on a Recurrent
Neural Network augmented with a state-of-the-art attention layer
from which correlations between log entries are deduced. To be
able to deal with huge amount of data, LogFlow also relies on a
new log parser algorithm that can be orders of magnitude faster
than best existing log parsers. Experiments run with several system
logs generated by Supercomputers and Cloud systems show that
LogFlow is able to achieve more than 96% of accuracy in most cases.

1 INTRODUCTION
Large scale distributed systems, such as Cloud infrastructures and
Supercomputers, are challenging to operate because the probability
of experiencing anomalies and failures increases with the size and
the complexity of the systems [11, 22]. The logs generated by these
systems are themain source of information to understand the causes
and consequences of a given event [11, 20, 24]. As such, several
solutions, based on statistical and machine learning approaches [5,
7, 9, 10, 24, 26], or even based on deep learning [3, 7, 8, 18], have been
proposed to analyze systems logs automatically. The goal of these
works is failure detection [3, 7, 8, 18, 24], failure prediction [5, 10],
or root cause analysis [9, 26].

We posit that, still today, the logs of large-scale systems are often
analyzed manually by system administrators. Indeed, despite the
fact that automatic log analysis is an active research area, it is also
a young research domain where widely adopted solutions have
not emerged yet [15]. Furthermore automatic log analysis can be
complex because the information included in logs is not always
accurate [6, 20]. A human expertise can be needed to correctly
interpret the provided information or at least to label data before
applying a learning approach [6, 8].

The goal of our work is to provide a tool that can help human
operators in the daunting and tedious task of system logs analysis.
To simplify and speed-up log analysis, we present LogFlow1, a tool
that automatically identifies correlations between log entries in
the log journals of a large scale system. Given a selected log entry,
LogFlow is able to construct a graph of correlations of the preceding
1Available at https://github.com/bds-ailab/logflow

ICDCN’21, January 2021, Nara, Japan
.

log entries that can best explain the occurrence of the studied event.
The work of Fu et al. [9] illustrates how such graphs can be of great
help when running a root-cause analysis manually.

For LogFlow to be useful to practitioners, some properties are
required. First, and most importantly, the obtained results should
be reliable. It means that LogFlow should accurately identify cor-
relations between log entries in system journals. Second, LogFlow
should be fast. Human operators will be willing to use such a tool
only if processing large volumes of new data can be done fast
enough to avoid waiting for hours before getting results. This is a
major challenge as large scale systems can produce huge amount
of data each day. For instance, one of the supercomputers studied
in this paper produces more that 2M log entries in 24 hours.

To accurately identify correlations between log entries, we lever-
age state-of-the-art deep learning techniques. More specifically,
we use a Recurrent Neural Network (RNN) with Long Short-Term
Memory (LSTM) [14] to build a model that is able to predict the
next log entry based on a sequence of log entries. Furthermore, we
augment it with an attention layer [16] to add interpretability to
the model. We use an attention layer proposed in the context of
Natural Language Processing [21] to understand which log entries
the LSTM model relies on to predict the next log entry. Heuristics
are used to deduce graphs of correlations between log entries from
the outputs of the attention module.

Our model is not used to make real predictions. As the purpose of
LogFlow is to help practitioners analyzing existing journals, when
a prediction is run we already know the expected output. Hence,
obtaining the correct prediction simply confirms that LogFlow has
managed to identify strong correlations between log entries. On the
other hand, as we explain in detail in the paper, we take advantage
of the fact that we know the expected output of each prediction in
the design of LogFlow. Namely, a difficult problem when building
a predictive model for system logs is that the dataset is highly
imbalanced: Some events may occur tens of millions of times while
others occur only a few thousand times. If no specific measure is
taken, there is a high chance that the model only learns to predict
the frequently occurring events [4, 23]. In LogFlow, we propose a
simple solution to this problem: Instead of having a single model in
charge of predicting all log entries, we build several models, each of
them being in charge of predicting a subset of the log entries. Then,
knowing in advance the expected output allows us to select the
appropriate model for each prediction. Our evaluation shows that,
thanks to this solution, LogFlow achieves a very high prediction
accuracy even for highly imbalanced datasets.

Regarding the performance challenge, we identify that the most
expensive operation when trying to find correlations between log

https://github.com/bds-ailab/logflow

ICDCN’21, January 2021, Nara, Japan Marc Platini, Thomas Ropars, Benoit Pelletier, and Noel De Palma

entries is the step called log parsing [12, 17, 27]. Log parsing is the
necessary first step for analyzing logs as it allows identifying all
the log entries that report a similar event. Experiments run with
the best existing log parsers show that they are able to parse a few
thousands log entries per second. It implies that it can take hours
or even days to parse very large journals.

LogFlow relies on a new parsing technique, LFP (for "LogFlow
Parser"), that is based on the simple, yet conservative, assumption
that all log entries representing the same event have the same
number of tokens. This is in general realistic, as logs are generated
based on message templates included in the code of applications,
libraries, OS services, etc. [24]. This assumption, together with the
use of a hashmap to sort data, allows achieving high performance
by: i) creating an algorithm that has a linear time complexity; ii)
enabling a simple parallelization of the program. LFP achieves
orders of magnitude faster log parsing compared to state-of-the-art
solutions [27], while being comparable in terms of accuracy.

To evaluate LogFlow, we use public datasets containing logs
of Supercomputers and Cloud systems [13]. We also use our own
dataset that corresponds to logs coming from the DKRZ (Deutsches
Klimarechenzentrum) Supercomputer and that includes more than
600 million log entries. The results show that LogFlow is able to
predict a given log entry in the journals with a precision and recall
above 96% on all datasets, and thus, that we are able to accurately
identify precursor log entries for a vast majority of the log entries.
To verify the soundness of our approach, samples of graphs ex-
tracted by LogFlow have been validated by local experts. From
performance point of view, our results show that LogFlow, thank to
LFP, is able to parse any of the tested dataset in less than 3 minutes
while best existing parsers can take up to several days.

To summarize, this paper proposes an original idea to help hu-
man operators in the analysis of logs of large scale systems. LogFlow
reveals correlations between log entries in potentially very large
log journals and relies on two main contributions to do so:

• To infer correlations between log entries, we demonstrate
the efficiency of a deep-learning LSTM model augmented
with a state-of-the-art attention layer. We also show how the
fact that LogFlow is used to find correlations between past
events can be used to build a more accurate learning model.

• To make our system usable even with very large journals,
we propose a simple, yet accurate, log parsing strategy that
can be orders of magnitude faster than existing log parsers.

We define the terminology used throughout this paper in Sec-
tion 2, and discuss the related work. Section 3 presents and eval-
uates our solution based on deep learning to automatically find
correlations between log entries in journals. Section 4 presents and
evaluates our new log parsing technique. We draw conclusions
from this work in Section 5.

2 BACKGROUND
2.1 Terminology
We use the word journal to name the file aggregating all system
logs generated by one or multiple nodes of a large scale system. A
journal is composed of log entries, ordered by their timestamp. A
log entry is a message generated by one component of the system.
A log entry is associated with a template which is defined by the

tokens that remain the same in all equivalent log entries. Equivalent
log entries correspond to the same system event reported by the
same component and occurring at different times and/or in different
locations in the system.

To illustrate the notion of template, let us consider the following
two log entries reported by the Linux kernel:
CPU46: Package temperature above threshold
CPU17: Package temperature above threshold

These two log entries obviously have the same template:
*: Package temperature above threshold

and describe the same event, that is, the overheating of one CPU.
In this paper, we assume that a log entry is composed of a header

that provides meta-information about the log entry such as its
timestamp, the node and service that generated it, or its severity2,
and a free-text message which describes an event, as illustrated
in the previous example. The parsing of a log entry refers to the
parsing of its free-text message.

2.2 Related work
The analysis of the related work is divided into two parts. In a first
part, we present existing work based on machine learning for log
analysis in large scale systems to detect and predict anomalies. In a
second step, we focus on the problem of log parsing.

2.2.1 Log analysis and fault prediction. Jauk et al. survey recent
contributions to fault analysis and prediction in Supercomput-
ers [15], and show that a significant number of publications focus on
system logs. The automatic analysis of logs on Cloud environments
is also an active research topic [7, 24].

Machine learning approaches have been studied as a means to
analyze logs in large scale systems with the main goal of detecting
or predicting failures [5, 24]. Logs are an important source of in-
formation to predict and understand failures. It should be noted,
however, that the goal of LogFlow is not to automatically detect
or predict the (future) abnormal state of the system, but to assist
system administrators in the analysis of journals to discover the
sequences of log entries that lead to a particular event. As a conse-
quence, LogFlow is not designed to specifically predict rare events.

We are not the first to study the use of RNNs and, more specifi-
cally, LSTMs to analyze system logs [3, 6, 8]. LSTMs are a solution
of choice to analyze logs as they are designed to model temporal
sequences [14]. The work on Deeplog [8] was the first to propose
such a solution to model the behavior of a large scale system using
logs. Deeplog detects anomalies through a streaming analysis of
logs entries. The high accuracy of the predictions made by DeepLog
on Cloud journals illustrates the value of using a solution based on
LSTMs in this context. The work by Das et al. [6] further demon-
strates the ability of LSTMs to extract knowledge from system logs
by: i) obtaining a high accuracy in the prediction of failures in
supercomputers; ii) presenting a solution that predicts how much
time is left before a failure occurs. Finally, in the context of cyber
security, Brown et al. [3] propose to use an attention layer to better
understand the LSTM model that is built by their system to detect
attacks. Our work takes inspiration for this work and shows how
a LSTM can be used together with an attention layer to deduce
correlations between log entries.

2See, for instance, https://tools.ietf.org/html/rfc5424

https://tools.ietf.org/html/rfc5424

LogFlow: Simplified Log Analysis for Large Scale Systems ICDCN’21, January 2021, Nara, Japan

As the core of their solution is about the construction of graphs
of correlations between log entries, the work by Fu et al. [9] and
Gainaru et al. [10] are close to LogFlow, although they are based
on statistical approaches. As shown in previous works [6, 8] and
as our evaluation confirms (see Section 3.3), solutions based on
LSTMs can achieve a better accuracy than the techniques proposed
in these work. Still, the work of Fu et al. [9] shows that identifying
graphs of correlations between log entries can be of great help for
system administrators in the difficult task of root cause analysis.

2.2.2 Log parsing. A typical usage scenario for LogFlow would
be as follows. Anomalies are reported by the users of a large scale
infrastructure and an administrator decides to analyze the journals
generated over the past week to diagnose the health of the system
and uses LogFlow to simplify this task. Here LogFlow can be useful
only if it does not take hours to process these journals. Nence, to
foster the use of the tool by system administrators, LogFlow should
be able to process large volumes of data in a short period of time.

Using LSTMs to analyze system logs requires an initial pre-
processing step called log parsing [27]. Based on the definitions
given in Section 2.1, the purpose of a log parser is to identify the
template associated with each log entry. This log-parsing step is
the most time consuming for LogFlow when analyzing new log
entries for a system.

The two main characteristics of log parsers are the accuracy, i.e.,
their ability to discover all templates existing in journals, and their
efficiency, i.e., the speed at which they are able to parse journals.
Zhu et al. present a extensive comparison of state-of-the-art log
parsers [27]. Among the evaluated log parsers, Drain [12] obtained
the best results in terms of accuracy, especially on the datasets
that correspond to system logs. Furthermore, the results show that
Drain is the most efficient open-source log parser for system logs,
together with IPLoM [17]. Still, it should be noted that the journals
we consider in this paper are much larger than the one used for
performance evaluation in [27] (1GB vs hundreds of GBs). In the
rest of the paper, we use Drain [12] as a reference for log parsing.

In Section 4, we present a new solution for log parsing, LFP,
targeting system logs that is orders of magnitude more efficient
than existing log parsers. Similarly to what was proposed in [17],
the design of LFP is built on the assumption that all log entries
corresponding to the same event include the same number of tokens.
The log entries presented in Section 2.1 illustrate this assumption: In
this case, it seems safe to assume that all log entries corresponding
to a CPU overheating event reported by the Linux kernel include 5
tokens. Our algorithm makes use of this assumption to allow the
parallel processing of large journals. It also leverages a hashmap
data structure to achieve a linear practical time complexity.

3 FINDING CORRELATIONS BETWEEN LOG
ENTRIES

This section presents the core of LogFlow, our tool to automati-
cally identify correlations between log entries in system journals.
LogFlow relies on a model to predict the next log entry in systems
logs based on the sequence of the most recent log entries. This
model is built using an LSTM [14] and is augmented with an atten-
tion layer [21] to obtain information about the log entries that most

contributed to the prediction. From the outputs of the attention
layer, LogFlow deduces correlations between log entries.

We start by presenting the design of LogFlow and how it discov-
ers correlations between log entries in journals. Then, using logs
from real systems, we present an evaluation of the predictive capa-
bilities of LogFlow, and so, of its ability to find valid correlations.

3.1 Building the model and detecting
correlations

This section describes how we build a model based on an LSTM to
predict log entries in system journals and how we deduce correla-
tions between log entries from the output of the model. We start
by presenting the necessary pre-processing steps that should be
applied to the data before being given as input to the LSTM. Then,
we detail the architecture of our predictive model. We present how
we take advantage from the fact that LogFlow already knows the
expected output when it makes a prediction to deal with the prob-
lem of imbalanced dataset. Finally, we describe how we process the
outputs of the attention layer integrated in our predictive model to
pinpoint important correlations between log entries.

3.1.1 Pre-processing log entries . Our solution relies on an LSTM
for predictions. However, the LSTM cannot directly use raw log
entries as input [8]. Instead, similarly to what has been done in
preceding works [6, 8], pre-processing steps involving log parsing
and embedding are applied:

Log parsing. As already described, log parsing aims at discov-
ering templates in the log entries to identify all log entries that
describe equivalent events. Accurately identifying templates is the
first necessary step to build a model that can learn sequences of
events occurring in the system. In the following, we use the state-
of-the-art log parser called Drain [12] for this step. We propose an
alternative log parsing strategy in Section 4.

Embedding. The purpose of the embedding step is to replace
templates identified by the log parser by numerical vectors that can
be easily processed by a deep neural network. To this end, LogFlow
relies on the state-of-the-art algorithm called word2vec [19]. When
dealing with words in the context of Natural Language Processing,
word2vec builds vectors that carry semantic meaning. Hence, these
vectors allow a machine learning algorithm to infer that although
computer and server are different words, they might have a similar
meaning. In our case, the inputs of word2vec are templates instead
of words. This way, word2vec takes into account the sequences
of log entries in which each template appear to try identifying
similarities between templates.

3.1.2 The predictive model. Considering the large number of log
entries in the journals of large scale infrastructures, we choose to
use a neural network, more precisely an LSTM [14], to build a model
that can predict the next log entry from a sequence of log entries.
LSTMs are neural networks dedicated to learn temporal correlations.
They have been shown to be highly accurate for Natural Language
Processing [2]. LSTMs model the natural language as sequences of
words. From this point of view, analyzing sequences of log entries
in system journals can be seen as a similar problem.

ICDCN’21, January 2021, Nara, Japan Marc Platini, Thomas Ropars, Benoit Pelletier, and Noel De Palma

LSTM Attention
module

C) [0.2, 0.3, 0.8]

A) [0.1, 0.3, 0.4]

B) [0.6, 0.1, 0.3]

Fully
connected layer

Prediction
D

C) 0.2

A) 0.3

B) 0.8

Correlation
Graph

D

B

Figure 1: Model architecture and identification of correla-
tions between log entries

For this model to be useful for LogFlow, it should be able to
accurately predict events but it should also be interpretable, that is,
it should provide information about the entries the model focuses
on to make predictions. To this end, we use attention module. This
module associates a weight with each input. A higher weight means
that the input is more important in the prediction. Different solu-
tions have been proposed for getting attention with LSTMs [16, 21].
We choose to use the Temporal Attention Gated Model [21] because
of its good results on multiple benchmarks and its simple design.
The attention module is trained as a part of the model.

The last layer of our architecture is a fully connected layer that
aggregates the output of the attention module to make predictions.
More precisely, the output of the fully connected layer is, for each
identified template, the probability estimated by the model that
this template is the one that will appear after the sequence of log
entries provided as input. We consider that the predicted template
is the one with the highest probability.

Figure 1 summarizes themodel architecture and presents through
an example how correlations between log entries are deduced from
the outputs of the attention layer after a correct prediction. In this
example, we assume that a journal includes a sequence of 4 log
entries that correspond to different templates that we name A, B,
C, and D. To understand whether log entry D has correlations with
the 3 preceding log entries, we ask the trained model to predict the
next event when it is given the sequence A-B-C as input. As illus-
trated on the figure, what is given as input to the LSTM is actually
neither the log entries directly nor the templates identified by the
log parser, but the embedding vectors representing the templates
obtained after the pre-processing steps. The model correctly pre-
dicts D. Hence, we conclude that there are correlations between D,
and the 3 preceding log entries. To obtain more information about
these correlations, we analyze the weights provided by the atten-
tion module. The high weight associated with B reveals that the
model mostly relied on this input to predict D. Hence, we deduce
that there is a strong correlation between log entries D and B.

3.1.3 Dealing with imbalanced datasets . The description given
until now assumes that a single model is in charge of all the pre-
dictions. However, as shown in Section 3.3, some templates may
appear way more often than others in system logs. For instance, one
can easily anticipate that log entries reporting network connections
will (hopefully) appear more often in journals than events reporting
that a hard disk is full. Having such an imbalanced dataset is an
important issue in machine learning [4, 23]. The risk is that the
model tends to focus on correctly predicting the most common
events to quickly decrease its error rate but that it consequently
becomes unable to predict less common events. The problem has
already been identified for predictions with system logs in [10].

Diverse solutions have been proposed in the literature to deal
with the problem of class imbalance with deep neural networks [4].
They range from adapted sampling methods to the definition of
new loss functions. Such solutions can achieve good results but
require a high degree of expertise [4].

To deal with this problem, we propose an alternative method
that takes advantage of the fact that, for the predictions made by
LogFlow, we know in advance the expected output as we illustrated
in Figure 1. Our solution is inspired from the Single-class learning
approach [23]. This method deals with imbalance for binary classi-
fication problems by building a model only for the class with the
lowest number of occurrences. In our case, we propose to build
several models, each dedicated to a subset of the templates/events.
Since the total number of events can be large, we cannot afford to
build one model per event. We build several models, each being in
charge of the predictions for a set of templates that appear a similar
number of times in the journals. More specifically, if an event ap-
pears in the order of 10𝑐 times, we say that it has a cardinality𝐶 . We
build a single model for all events that have the same cardinality.

To fully describe our solution, we should mention that during
the training phase, the model built for events with cardinality𝐶𝑎 is
given as input only sequences of events [𝑒𝑜 , 𝑒1, . . ., 𝑒𝑛] leading to
an event 𝑒𝑛+1 with cardinality 𝐶𝑎 . Of course, the events 𝑒𝑖 in the
provided sequences do not necessarily have a cardinality 𝐶𝑎 .

Using such an approach is only possible in the specific context
of LogFlow. In general, when running a prediction, the expected
output is not known beforehand. Hence it is not be possible to
know which model to use for a given prediction. Note also that
our solution based on multiple models allows us to easily increase
the parallelism during the training phase. This is important as it
is known to be challenging to find parallelism in the training of
LSTMs models [1]. The results presented in Section 3.3 show that
the proposed approach greatly improves the prediction accuracy
on events that appear less often in the journals.

3.1.4 Extracting correlations from the outputs of the attention layer
and building graphs of correlations. As shown in Figure 1, LogFlow
identifies correlations based on the outputs of the attention mod-
ule. This module gives the weight of each previous log entry in a
prediction. From these weights LogFlow needs to decide what is a
significant enough weight to conclude about a correlation. Further-
more to build the graph of correlations between a selected log entry
𝑙 , the algorithm is executed multiple times. Namely, the algorithm
is executed a first time considering entry 𝑙 and gives as output a
set of log entries 𝐿𝑐𝑜𝑟 that can best explain 𝑙 . Then, to extend the
graph, the algorithm is executed for each log entry 𝑙 ′ in 𝐿𝑐𝑜𝑟 to
find the log entries that can best explain the log entries from 𝐿𝑐𝑜𝑟 .
Conditions to decide when it becomes useless to dig deeper in the
graph of correlations need to be defined. We define automatic rules
to take decisions about the construction of the graphs, and thus,
avoid asking users to set thresholds for these two problems.

To decide when a weight provided by the attention module is
significant enough, we automatically compute a threshold 𝑇𝑤𝑒𝑖𝑔ℎ𝑡 .
This threshold is computed as: 𝑇𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑚𝑒𝑎𝑛(𝑊) + 𝑠𝑡𝑑𝑑𝑒𝑣 (𝑊),
where𝑊 is the set of weights provided by the attention module
for a given prediction. Using this threshold, we select only the log
entries with a weight greater than the sum of average and standard

LogFlow: Simplified Log Analysis for Large Scale Systems ICDCN’21, January 2021, Nara, Japan

deviation of all of weights returned by the attention module for
a prediction, that is, we select only the remarkable weight values.
The value of this threshold is recomputed for each prediction.

Regarding the construction of the graph for a selected log entry,
we consider that the graph is complete when no new nodes are
added while trying to find new correlations. The first reason to stop
adding nodes is when LogFlow makes a wrong prediction. A wrong
prediction means that the model could not capture correlations be-
tween the currently analyzed log entry and the previous log entries
in the journal. The second reason is when the templates associated
with the log entries that are identified as having correlations with
the currently analyzed log entry, are already represented in the
graph. In the case, we simply add an edge to represent the new
correlation without creating a new node. Note that this second
condition can be deactivated for users that would like to try dig-
ging deeper in the graph of correlations to keep as only stopping
condition the case where wrong predictions are made.

3.2 Using LogFlow to analyze new log entries
Using LogFlow to analyze the journals of a large scale infrastructure
involves first a learning step, during which the predictive model
is built using the available system journals of the studied infras-
tructure. Once the model is built, it can be used to identify the
correlations between the log entries in any part of the journals.

To analyze new journals, that is, log entries generated after the
model has been built, no training phase is required. By default,
the only steps to execute before being able to use the model are
the pre-processing steps. Log parsing is required to identify which
template each log entry corresponds to. Hence, the delay required
by LogFlow to provide information about correlations for new log
entries only depends on the efficiency of the log parser.

This workflow assumes that all the templates appearing in the
new log entries are already present in the log entries used for
training the model. This should be the case if the journals used
for training cover a period that is large enough and if there is no
system update. If new templates do appear, it is then required to go
first through a new training phase to update the predictive model.

3.3 Evaluation
The evaluation of LogFlow focuses on assessing its prediction ca-
pabilities. Indeed, if the model is able to predict the next log entry
based on the previous ones, then we can be confident that it found
valid correlations. Four datasets representing the journals of real
systems are used for the evaluation.

3.3.1 Methodology. This section presents the four datasets and the
metrics used for our evaluation. It also describes the hardware on
which the experiments are run and the software configuration.

Metrics. Since log prediction is a multi-class classification prob-
lem where each event corresponds to a class, grading the predictive
capabilities of our model requires adapted metrics. The metrics
used for binary problems are the recall3 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) and the
precision 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), the 𝐹1 score being a measure of the
accuracy that combines recall and precision 𝐹1 = 2×(𝑃×𝑅)/(𝑃 +𝑅).
Instead of using the standard version of these metrics, we choose
3TP: True positive; FN: False negative; FP: False positive.

to measure micro-metrics and macro-metrics [25], that can better
capture the prediction accuracy for multi-class problems. Namely,
precision and recalls are computed for each class individually, and
micro-metrics are obtained by computing a weighted average on
the results while macro-metrics are obtained by computing an
unweighted average. Hence micro-metrics evaluate the ability of
making a maximum of correct predictions while macro-metrics
evaluate the ability to correctly predict all classes.

Datasets. The Loghub repository [13] is a great source of data
regarding system logs. Among the datasets referenced by Loghub,
we select 3 main datasets, BlueGene/L (BGL), Thunderbird (THU),
and Spark (SK) based on the following criteria: i) They are logs
of large scale systems (Supercomputers and Clouds); ii) They are
of significant size (700MB for BGL, 2.75GB for Spark, 29.6GB for
Thunderbird); iii) They include a large number of templates (>100).

Additionally, we use a dataset corresponding to 10 months of
operation (from January to September 2018) of the DKRZ Super-
computer4. This dataset includes 72GB of data and more than 1400
templates. It is representative of today’s large scale systems. Unfor-
tunately, this dataset could not be made publicly available.

Modifications of the datasets. To accurately evaluate the predic-
tive capabilities of LogFlow, we apply some filtering steps on the
datasets.

In the datasets, we observe sequences including only (or mostly)
log entries with the same template. A high accuracy in the pre-
dictions for such sequences can easily be obtained by predicting
that the next log entry is the same as the previous one. To avoid
obtaining artificially high accuracy because of these cases, we apply
a filtering step. Namely, when predicting an event E, we provide as
input a window where log entries corresponding also to template
E have been filtered out5. This filtering step is applied both when
training the models, and when running predictions.

Our second filtering step removes the log entries that appear too
often in the journals. Using the definition of cardinality introduced
in Section 3.1.3, Figure 2 presents the distribution of the templates
and the log entries according to their cardinality. Some templates
appear millions of times while others only appear a few times. We
filter out the log entries associated with a template that appears
more than 107 times in a dataset for three main reasons: i) Few
templates belong to this category as shown in Figure 2a (e.g., only
2 in the Thunderbird dataset), which implies that with our multi-
model approach, the models in charge of these cardinality could
manage to make correct predictions without evidencing strong
correlations; ii) These events appear so frequently that they mostly
do not carry any useful information for the user and that they
have very low correlations with other log entries; iii) Accurately
predicting these events would dramatically improve the statistics
about accuracy and hide the real performance of our models.

Finally, we do not try to predict events that appear less than
103 times in the logs. We make this choice because deep-learning
methods (including LSTMs) require a large number of examples to
provide accurate results. Predicting correctly such log entries would
most probably be a matter of luck or overfitting, and would not
4Ranked 93 in the Top500 of June 2020.
5However, if an event 𝐸′ appears multiple time in the window, the multiple log entries
corresponding to this template are kept.

ICDCN’21, January 2021, Nara, Japan Marc Platini, Thomas Ropars, Benoit Pelletier, and Noel De Palma

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8C
um

ul
at

iv
e

D
ist

rib
ut

io
n

(%
)

Cardinality
DKRZ THU BGL SK

(a) Templates

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 C
um

ul
at

iv
e

D
ist

rib
ut

io
n

(
%

)

Cardinality
DKRZ THU BGL SK

(b) Log entries

Figure 2: Empirical Cumulative Distribution Function of the
number of templates and the number of log entries accord-
ing to the cardinality.

give any reliable information about correlations. We further discuss
how to handle this kind of events in Section 3.5. One may think that
removing these events makes a comparison with the related work
unfair. However Figure 2b shows that these templates represent
a low number of log entries. Hence including these events in our
evaluation could modify the micro-metrics (main metric considered
by the related work) by at most 0.62% based on our computations.

During our experiments, we use 60% of the data for training and
40% for testing. To generate the testing and the learning set, we
shuffle the whole log entries in a dataset and we split them into
two sets. Obviously, once the log entries to be used for learning
and testing are selected, the non-shuffled data are used to provide
the sequences of log entries as input to the model.

Hardware and software configuration. LogFlow is implemented
using Python36. We use the word2vec implementation provided by
Google7. Pytorch is used to develop the LSTM and the attention
module. Regarding the log parser, we use the implementation of
Drain provided by LogPAI8. The LSTM is trained using a node with
2 20-core Intel Xeon SKL Gold 6148 CPU, 384 GB of RAM, and
one Nvidia V100 GPU (CUDA v.10.1, Nvidia Driver v.418.67). The
operating system is RedHat v.7.6.

The following parameters are used for the model. We use a
window of 30 previous log entries to train the model. The impact of
this choice is evaluated in a dedicated experiment. We use a batch
size of 128. The learning model is composed of one unidirectional
LSTM with a hidden size of 50 and 1 layer followed by the attention
layer and one fully connected layer of size 50. We set the length of
the vector provided by the word2vec algorithm to 20. Most of these
parameters could be optimized to try obtaining better predictions.
However, as our results show, this configuration already achieves
good results on all datasets. The condition to stop the learning
process is when themacro-𝐹1 value does not increase by more than
0.01 compared to the 3 previous iterations. Using this stopping
condition, training the models takes approximately 2 hours.

3.3.2 Evaluation of the predictive model.

Accuracy of the predictions. Figure 3 presents the micro-metrics
and macro-metrics for the predictions made on all the datasets.

6https://github.com/bds-ailab/logflow
7https://code.google.com/archive/p/word2vec/
8https://github.com/logpai/logparsercommit62c7600

0.5
0.6
0.7
0.8
0.9

1

DKRZ THU BGL SKV
al

ue
 o

f t
he

 m
et

ric

micro-recall micro-precision macro-recall macro-precision

Figure 3: Predictions accuracy of LogFlow

0.5
0.6
0.7
0.8
0.9

1

DKRZ THU BGLV
al

ue
 o

f t
he

 m
et

ric

micro-recall micro-precision macro-recall macro-precision

(a) LogFlow

0.5
0.6
0.7
0.8
0.9

1

DKRZ THU BGLV
al

ue
 o

f t
he

 m
et

ric

micro-recall micro-precision macro-recall macro-precision

(b) Using a single model

Figure 4: Prediction accuracy with a journal per node

To improve the readability, the y-axis starts at 50%. The results
demonstrate the high prediction capabilities of our model on all
datasets. Considering the micro-metrics, we observe that in the
worth case, 86% of precision and recall are achieved, and that the
results are as high as 96% on the DKRZ dataset.

On BGL, our micro-precision and micro-recall reach 95%. This
dataset was also used by the close related works of Fu et al. [9]
and Gainaru et al. [10]. On this dataset, Gainaru et al. obtain a
micro-precision of ∼90% but a micro-recall of only ∼72%. Fu et al.
achieve a micro-precision of ∼88% and a micro-recall of ∼75%. This
shows the advantages of using a LSTM.

Figure 3 also shows that, in general, the value of the macro-
metrics are lower than the ones of the micro-metrics. This means
some events that occur less often are not predicted as accurately.
We further analyze this problem later in the section.

Impact of aggregating journals from multiple nodes. The results
presented until now consider the case where the log entries gener-
ated by all nodes in the system are aggregated into a single journal.
This can make the prediction task difficult as unrelated log entries
generated by different nodes might be interleaved.

To measure the impact of this problem, we run an evaluation
where the log entries are sorted to create one journal per node, and
where the prediction are made based on these per-node journals.
The Spark logs are not considered for this evaluation because they
do not include information about the node that generated a log
entry. The results presented in Figure 4a show that the predictions
are much better in this case. The micro-metrics reach at least 96%
on all datasets while the value of the macro-metrics is also greater
than 0.94 on the BGL and the DKRZ datasets. Hence, creating a sep-
arated journal per node allows achieving much better predictions
on average, even if it might prevent from detecting correlations
between events occurring on different nodes.

Multi-model evaluation. To evaluate the impact of our choice to
build multiple predictive models (one per set of events that have
the same cardinality), we evaluate a solution that uses a single
model. The results presented in Figure 4b, re-using the per-node
journals created previously, show that the micro-metrics values

https://github.com/bds-ailab/logflow
https://code.google.com/archive/p/word2vec/
https://github.com/logpai/logparser commit 62c7600

LogFlow: Simplified Log Analysis for Large Scale Systems ICDCN’21, January 2021, Nara, Japan

20 30 40 50 60 70 80 90
Window size

0.0

0.1

0.2

0.3

0.4

0.5
P

ro
ce

ss
in

g
tim

e
p

er
 it

e
m

 (
s)

0.90

0.92

0.94

0.96

0.98

1.00

M
ac

ro
-f

1
 v

al
ue

processing time

macro-f1 value

Figure 5: Impact of the window size on the macro-𝐹1 value
and on the processing time.

remain good but macro-metrics values are significantly impacted
(reduction by more than 30%). This means that a single model is
not able to correctly predict templates that appear less often in the
logs, and demonstrates the benefits of using multiple models.

Detailed analysis. The results presented until now show that the
value of the macro-metrics are lower that the value of the micro-
metrics. To better assess the consequences of this observation, we
conducted a more detailed analysis. We present this analysis with
the DKRZ dataset because for this dataset we can rely on the knowl-
edge of our in-house experts. Note however that the results obtained
with the other datasets are qualitatively the same.

We studied the predictions according to the templates appearing
in the DKRZ journals. For a large majority of the templates (88%),
a precision and recall higher than 90% is achieved. On the other
hand, a precision lower than 60% is observed for only 5.1% of the
templates and a recall lower than 60% for only 4.2% of them. In
both cases, these templates correspond to less than 0.7% of the log
entries. An example of templates for which the prediction results
are very low is "pps_core: LinuxPPS API ver. 1 registered".
The template is not well predicted probably because it corresponds
to the first log entry written when this software starts.

We also analyzed the value of the macro-metrics according to the
service that generated the log entries and according to the severity
of the log entries. We observed that good recalls and precision were
obtained for all levels of severity. On the other hand, three services
(slurmstepd, sssd, and crond) have macro-metrics between 50%
and 80%. It can be noted that 2 of these services relates to external
actions, while the last one relates to automatic actions.

3.3.3 Impact of the window size. Among the parameters of our
models, one that could have a significant impact on the correlations
that are extracted is the window size, that is, the number of preced-
ing log entries that are provided as input to make a prediction.

Figure 5 assesses the impact of the window size on the training
time and on themacro-𝐹1 value.We present the results for the DKRZ
dataset, but the results are qualitatively the same on all the datasets.
The macro-𝐹1 value increases significantly when increasing the size
of the window from 15 to 30 but increases by less than 0.01 after
that. On the other hand, the processing time increases significantly
when increasing the window size (here 4 models are trained in
parallel on the GPU). Hence, the default size of 30 provides a good
trade-off between accuracy and training time.

3.3.4 Inference time. We evaluated the time required by LogFlow to
identify the log entries correlated with a selected log entry, once the
model has been trained. Measurements run on a laptop equipped

LustreError: 22927:0:(llite_lib.c:1905:ll_statfs_internal()) md_statfs fails: rc

LustreError: 22927:0:(lmv_odb,c:1488:lmv_statfs()) can't
stat MDS #3 (lustre-02-ID), error

Lustre: lustre02-ID: Connection to lustre02-ID (at IP) was lost; in progress
operations using this service wil wait for recovery to complete

LustreError: 11-0: lustre-02-ID: operation odb_ping to node
IP failed: rc

0.87

0.64

0.91

0.85

0.69

Figure 6: Example of graph obtained on the DKRZ dataset

with a 4-core i7-7820HQ CPU and 32GB of memory show that
running a prediction and analyzing the outputs of the attention
layer for one log entry takes less than 10ms, which is compatible
with an interactive use of LogFlow.

3.4 Example of LogFlow graph
Figure 6 presents a graph obtained using LogFlow on the DKRZ
dataset, that has been validated by local Lustre experts. Here, IP
addresses and host names have been anonymized. The nodes of
the graph are the log entries and the edges show the correlations
between the log entries. The numbers on the edges correspond to
the weights provided by the attention layer. The higher the weight,
the stronger the correlations between the log entries.

Starting from the log entry "md_statfs fails: rc", LogFlow
tries to predict it from the previous log entries. The prediction is cor-
rect and LogFlow identifies two main correlated logs: "can’t stat
MDS #3" and "Connect to lustre02-ID was lost". LogFlow
then tries to predict these two log entries to discover more corre-
lations with previous log entries. This graph shows that the error
"md_statfs fails: rc" might be related to a network issue
("obd_ping to node IP failed").

3.5 Discussion
The presented results demonstrate the capacity of LogFlow to pre-
dict the next log entry based on the current sequence of log entries,
and so, the ability of the obtainedmodel to find correlations between
log entries. Currently LogFlow ignores very rare events because
neural networks need to have enough samples of one class to build
an accurate model. To understand if this can be a strong limitation,
we analyzed the log entries corresponding to rare events in the
DKRZ dataset manually. A majority is generated when a node starts.
During this phase, sequences of logs are easy to read without the
help of a tool such as LogFlow. To deal with the remaining rare
events (rare failure events for example), it would be interesting to
study how algorithms proposed by related works [9, 10] could be
combined with LogFlow to detect correlations for these cases.

Our evaluation reveals that the current version of LogFlow pro-
vides better results when log entries are aggregated per node. Even
if the results on the merged logs are better than the one achieved by
related works, it shows that LogFlow could be improved to better
identify correlations between events occurring on different nodes
of the system. Some related works [5, 9] propose to use information
about the jobs that generated the log entries or the physical location
of the nodes in the infrastructure to better analyze the correlations
between the log entries generated on different nodes. Integrating
such strategies is part of our future work.

ICDCN’21, January 2021, Nara, Japan Marc Platini, Thomas Ropars, Benoit Pelletier, and Noel De Palma

4 EFFICIENT LOG PARSING
The section presents a new log parsing algorithm. The evaluation
presented in Section 3.3 are run using the log parser Drain [12].
According to extensive evaluations [27], Drain not only is the most
accurate log parser in the state of the art, it is also among the most
efficient ones. Efficiency is a major concern because the systems
we consider generate huge volumes of data. For instance, over the
period studied in this paper, the DKRZ supercomputer generates
2M log entries per day. Our evaluation shows that Drain is not able
to cope with such high numbers of log entries (see Section 4.2).

4.1 The design of LFP
The purpose of a log parser is to identify variable and constant
parts in log entries to derive templates. If we have two log entries
"Connection from NodeA" and "Connection from NodeB", a log
parser should be able to identify that they correspond to the same
template "Connection from *". Hence, log parsing can be seen
as a clustering problem where all log entries associated with the
same template should be put in the same group [12].

To achieve high performance in log parsing, the design of LFP
aims at achieving the following goals: i) Having a simple represen-
tation of the tokens appearing in log entries to reduce the memory
cost associated with storing these tokens; ii) Limiting the time
complexity of the algorithm; iii) Enabling parallelism.

4.1.1 Efficient representation of tokens. The first step of LFP is
creating a compact representation of tokens that still allows mean-
ingful comparisons. This step is also introduced in some other
parsers [12]. By meaningful, we refer to the fact that using a strict
equality for comparing tokens would be too restrictive. If we take
two memory addresses, 0x0c35685d and 0x200da20c, with a strict
equality, we would simply consider them as different tokens, and
so, we may conclude that the token is simply a variable part in a
log template. But we think that a more accurate template should
consider this token is a memory address.

Drain uses regular expressions to deal with this problem [12]. To
avoid depending on the definition of regular expressions by the user,
we propose an alternative representation with the goal of being
able to simply identify equivalent tokens that correspond to objects
that commonly appear in computer logs (memory addresses, file
paths, IP addresses, etc.). Hence, we create token descriptors using
three rules: i) For tokens including only letters, the descriptor is the
token itself; ii) For tokens including only numerical characters, the
descriptor is the constant NB; iii) For all other tokens, the descriptor
is a vector including 5 entries. The first 4 entries are boolean values
describing the presence of a type of character: numerical characters,
uppercase letters, lowercase letters, non alpha-numeric characters.
The last entry is the length of the word. Obviously, the descriptors of
tokens consume less memory than the tokens themselves, especially
for complex tokens such as file paths.

We should also mention that to identify tokens in log entries, the
white space is used as default separator, but we also considers the
characters ":" and "=" as separators. To illustrate the transformations
applied during this first stage of the log parser, we can consider the
following set of log entries:
1) Temperature_Celsius changed from 55 to 54
2) Connection of user=R52 from Moon

3) Temperature_Celsius changed from 54 to 53
4) Connection of user=B782 from Moon
5) Connection of user=Felix from Mars

After this stage, the log entries include the following descriptors:
1) (0,1,1,1,19) changed from NB to NB
2) Connection of user (1,0,1,0,3) from Moon
3) (0,1,1,1,19) changed from NB to NB
4) Connection of user (1,0,1,0,4) from Moon
5) Connection of user Felix from Mars

4.1.2 Identifying templates using comparison vectors. To identify
the log entries that correspond to the same template, we propose to
rely on comparison vectors. For a given log entry 𝑒 of size𝑛 including
the descriptors 𝑑𝑒1, 𝑑𝑒2 . . . 𝑑𝑒𝑛 , its comparison vector 𝑉𝑒 is defined
as follows:𝑉𝑒 = [𝑣𝑒1, 𝑣𝑒2, . . . 𝑣𝑒𝑛], where 𝑣𝑒𝑥 is the number of times
the descriptor 𝑑𝑒𝑥 also appears in position 𝑥 in other log entries.

Once the comparison vector of a log entry has been computed,
its template can directly be deduced from this vector. The rule for
identifying the set of constant descriptors 𝐷𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 describing
the template associated with log entry 𝑒 based on vector 𝑉𝑒 =

[𝑣𝑒1, 𝑣𝑒2, . . . 𝑣𝑒𝑛] is as follows. Let 𝑣𝑚𝑜𝑠𝑡 be the value that appears
the most frequently among 𝑣𝑒1, 𝑣𝑒2, . . . 𝑣𝑒𝑛 . A descriptor 𝑑𝑒𝑥 is in
𝐷𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 if and only if 𝑣𝑒𝑥 = 𝑣𝑚𝑜𝑠𝑡 .

Applying this algorithm to the set of log entries introduced above,
we obtain the following comparison vectors:
1) [1, 1, 1, 1, 1, 1]
2) [2, 2, 2, 0, 2, 1]
3) [1, 1, 1, 1, 1, 1]
4) [2, 2, 2, 0, 2, 1]
5) [2, 2, 2, 0, 2, 0]

The comparison vectors of entries 1, 3 only include the value 1.
Hence, their template include all the descriptors associated with
these entries. For log entries 2, 4, and 5, the value that appears the
most often in the comparison vector is 2. Hence the constant part
of their template include 4 descriptors (corresponding to the entries
with value 2), and they all correspond to the template "Connection
of user * from *", where "∗" represents the variable parts.

4.1.3 Efficient implementation of the algorithm. To obtain an ef-
ficient implementation, we rely first on the assumption that log
entries including different number of tokens correspond to differ-
ent templates. Note that this assumption is also exploited in other
solutions [12, 17], but is used only to reduce the complexity of the
algorithm and not to introduce parallelism. Hence, processing a
set of log entries starts by grouping the log entries according to
their number of tokens. Then each group can be processed inde-
pendently and fully in parallel. We should point out that the simple
identification of templates used in our algorithm, based on compar-
ison vectors that checks whether a token appears at the exact same
position in different log entries, also relies on this assumption.

For a group including 𝑁 log entries with size 𝑆 tokens, the def-
inition of comparison vectors implies that the total number of
comparisons required to build all comparison vectors is 𝑁 2 × 𝑆 . To
reduce this number in practice, we rely on a hashmap data struc-
ture. The keys in the hashmap are pairs composed of a descriptor
and a position of the descriptor in the log entry, while the value
associated with a key is the number of time this descriptor appears
at the given position in the log entries.

Hence, the algorithm processes the log entries in a group se-
quentially to replace the tokens by the corresponding descriptor,

LogFlow: Simplified Log Analysis for Large Scale Systems ICDCN’21, January 2021, Nara, Japan

and when a descriptor 𝑑 is created at position 𝑝 in a log entry, the
following algorithm is executed:

key = hash(d + "-" + p)
if key is in hashmap:

hashmap[key] += 1
else:

hashmap[key] = 0 // create an entry for the new key

When all log entries have been parsed and the hashmap is fully
populated, constructing the comparison vector of one log entry
only requires 𝑆 accesses to the hashmap. Hence, building the com-
parison vectors for all log entries in the group only requires 𝑁 × 𝑆

executions of the hash function and memory accesses. The same
cost is associated with populating the hashmap.

4.2 Evaluation
To evaluate the log parser, we use the same datasets as in Section 3.3.
Our experiments evaluate the efficiency and the accuracy of LFP.
In a second step, we evaluate the impact of the log parser on the
ability of LogFlow to predict log entries.

4.2.1 Methodology. LFP is implemented in Python3, usingmultiple
processes for parallelism9. To also obtain parallelism at the level of
I/O operations, our parallel version of the algorithm is implemented
as follows in practice. The dataset is split into 𝑁 files that are
processed in parallel. Each process builds private hashmaps using
the algorithm described previously based on the subset of log entries
it is assigned. Finally, the hashmaps of the different processes are
merged to run the identification of templates.

We compare LFP to the two best log parsers according to the
study presented by Zhu et al. [27]: Drain [12] and IPLoM [17]. We
use the implementation of IPLoM and Drain provided by LogPAI10
and use the parameters recommended in [27]. To understand the
performance benefits that are due to the parallelism and the im-
provements that are more generally due to our algorithm design
and implementation, we evaluate two versions of LFP: a sequential
version, called LFP-ST, where a single thread is used to process
all log entries, and a parallel version, simply called LFP where 40
processes are used to process log entries in parallel.

The evaluation is run on a 40-core node (two 10-core E5-2660-v3
processors with 2 hyper-threads per core), with 126GB of RAM, a
6TB HDD and with Ubuntu 16.04.3. The accuracy of the parsing
algorithms is measured using the metric proposed by Zhu et al. [27]
for three of the datasets (BGL, Spark, Thunderbird). The evaluation
compares the template found by the parser for each log entry to
the ground truth and reports the percentage of correct results. The
DKRZ dataset is not considered since it is not labeled.

The execution time of the log parsers is measured from the
moment the parser starts reading the log journals until the template
of all log entries have been discovered. The reported execution times
are average over three runs of each experiment.

4.2.2 Comparison of the parsers. Table 1 reports the execution
time and the accuracy for the 4 datasets. LFP is able to parse each
dataset in less than 3 minutes. The results of IPLoM are not included
in the table because it fails to parse any of the datasets in less

9https://docs.python.org/3/library/multiprocessing.html
10https://github.com/logpai/logparser commit 7be15f3

Execution time Accuracy
Dataset # log entries LFP LFP-ST Drain Drain LFP
BGL 4.7M 9s 47s 50s 0.96 0.95
Spark 15M 24s 226s 3594s 0.92 0.92
Thunderbird 211M 145s 799s >48h 0.95 0.99
DKRZ 611M 162s 2388s 41h / /
Table 1: Execution time and accuracy of the log parsers.

than 48 hours11. The performance of Drain varies. It manages to
parse the BGL logs in less than 1 minutes but it is unable to parse
the Thunderbird dataset in less than 48h. In general LFP is much
faster than Drain and, for instance, achieves a 150× speedup on the
Spark dataset and a 900× speedup on the DKRZ dataset. A detailed
analysis of the performance of Drain shows that it is impacted by
the total number of templates present in a dataset. Its performance
gets really low on the DKRZ and the Thunderbird datatsets because
they include several hundreds of different templates12.

The performance of the sequential version of LFP (LFP-ST) shows
that large performance improvements are obtained thanks to the
design of our algorithm. On the Spark dataset for instance, a 16×
speedup is observed compared to Drain. Introducing parallelism
further improves the performance. Additional measurements show
that LFP scales well up to 16 threads (13.2× speedup compared of
LF-ST). After this point, the scalability is more limited, which we
attribute to contention on the processor caches and on the disk.

With respect to accuracy, the results of LFP are very close to the
ones of Drain. This shows that the assumption we made about the
format of log entries is very often valid for this kind of systems. On
the Thunderbird dataset, the results of LFP are even better than the
results of Drain. The 99% accuracy achieved by LFP on this dataset
is better than the accuracy of any of the 13 log parsers evaluated in
[27] on the same dataset.

4.2.3 Impact of the log parser on the predictions. Although the
results obtained by LFP and Drain are close in terms of accuracy,
there are some variations which imply that depending on the log
parser that is used, the LSTM model does not have the same set of
templates to analyze for a given dataset.

We evaluated the impact of using Drain or LFP proposed in
this paper on the accuracy of the predictions made by the LSTM
model. For this evaluation, we used the DKRZ dataset as it is the
one where we observed the more differences between the templates
identified by Drain and by our parser. Running the evaluation in
the case where the log entries are grouped on a per-node basis, we
measured the quality of the predictions. We observe that the value
of the micro-metrics are the same with the two parsers. The only
small difference is that a macro-precision of only 94% is obtained
when using LFP whereas the value was 95% using Drain.

At the end, using LFP instead of Drain has almost no impact on
the quality of the predictions. We think that this can be explained
by the generalization capabilities of the LSTMmodels that manages

11The execution time of IPLoM is not consistent with the time reported by other
studies [27] using the same implementation. We are working with the authors to find
and correct the issue but it does not change the conclusion about this evaluation as
IPLoM has in general the same efficiency as Drain.
12The time complexity of Drain algorithm depends on the number of templates.

https://docs.python.org/3/library/multiprocessing.html

ICDCN’21, January 2021, Nara, Japan Marc Platini, Thomas Ropars, Benoit Pelletier, and Noel De Palma

to discover correlations between log entries even if the identified
templates are not exactly the same.

4.3 Discussion
Tomake the comparison between LFP and Drain complete, it should
be mentioned that Drain is an online parser while LFP works offline.
This means that in a scenario where the parser has already pro-
cessed a set of log entries generated by a system and has to parse
new log entries that might include new templates, Drain is able to
parse only the new log entries whereas LFP has to re-process all
the log entries from scratch13. This can be an advantage in some
cases but, in the context of LogFlow, it is mostly not. Indeed, if new
log templates need to be taken into account, the LSTM model needs
anyway to be re-trained and this training phase is going to be more
costly than the parsing. It is also important to recall that LFP is
able to process more than 600M log entries in less than 3 minutes,
which means that re-processing all log entries from scratch would
not be very costly in most cases.

Another advantage of LFP is that the algorithm has no parame-
ters that need to be configured by the user. On the contrary, most
existing log parsers have a set of parameters that need to be tuned
to obtain good results [12, 17, 27].

5 CONCLUSION
The paper presents LogFlow, a tool to help human operators dur-
ing the manual analysis of system logs generated by large-scale
infrastructures. For a given log entry, LogFlow is able to construct a
graph of correlations pinpointing the sequences of log entries that
can best explain the occurrence of the selected event. Our work
demonstrates how an LSTM deep-neural network augmented with
an attention module to obtain an interpretable predictive model can
be used to identify correlations between log entries. We additionally
propose a multi-model approach to deal with imbalanced datasets
that further increases the ability of LogFlow to identify correlations.
Finally, to allow LogFlow to deal with very large datasets, we pro-
pose a new log parser algorithm (LFP) based on a simple design
that allows log entries to be parsed in parallel and provides a very
good performance. Our evaluations with several datasets coming
from various systems demonstrate the accuracy of LogFlow in the
detection of correlations between logs entries and its efficiency.

ACKNOWLEDGMENTS
The work presented in this paper has been partially founded by the
ITEA PAPUD project and the Paris region SYSTEMATIC hub, as
well as by the national project PIA FSN HYDDA. We would also
like to thank DKRZ (Deutsches Klimarechenzentrum) for giving us
access to their data and helping us analyzing them.

REFERENCES
[1] Jeremy Appleyard. 2016. Optimizing Recurrent Neural Networks in cuDNN

5. https://developer.nvidia.com/blog/optimizing-recurrent-neural-networks-
cudnn-5/.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. Journal of machine learning research (2003).

13Note however that if no new templates are included in the new log entries, LogFlow
is also able to process directly the new log entries

[3] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. 2018. Recurrent
neural network attention mechanisms for interpretable system log anomaly
detection. InWorkshop on Machine Learning for Computing Systems.

[4] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. 2018. A systematic
study of the class imbalance problem in convolutional neural networks. Neural
Networks 106 (2018).

[5] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and Scott Baden.
2018. Doomsday: Predicting which node will fail when on supercomputers. In
SuperComputing’18.

[6] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:
deep learning for system health prediction of lead times to failure in hpc. In
Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing. 40–51.

[7] Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar Gulzar, Nipun
Arora, Cristian Lumezanu, Jianwu Xu, Bo Zong, Hui Zhang, Guofei Jiang, and
Latifur Khan. 2018. LogLens: A real-time log analysis system. In IEEE 38th
International Conference on Distributed Computing Systems (ICDCS).

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.

[9] Xiaoyu Fu, Rui Ren, Sally A McKee, Jianfeng Zhan, and Ninghui Sun. 2014.
Digging deeper into cluster system logs for failure prediction and root cause
diagnosis. In IEEE International Conference on Cluster Computing.

[10] Ana Gainaru, Franck Cappello, Joshi Fullop, Stefan Trausan-Matu, and William
Kramer. 2011. Adaptive event prediction strategy with dynamic time window
for large-scale hpc systems. In Managing Large-scale Systems via the Analysis of
System Logs and the Application of Machine Learning Techniques.

[11] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017.
Failures in large scale systems: long-term measurement, analysis, and implica-
tions. In SuperComputing’17.

[12] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 33–40.

[13] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2020. Loghub: A
Large Collection of System Log Datasets towards Automated Log Analytics.
arXiv:2008.06448

[14] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997).

[15] David Jauk, Dai Yang, and Martin Schulz. 2019. Predicting faults in high perfor-
mance computing systems: An in-depth survey of the state-of-the-practice. In
SuperComputing’19.

[16] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective
approaches to attention-based neural machine translation. arXiv:1508.04025

[17] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2009.
Clustering event logs using iterative partitioning. In Proceedings of the 15th ACM
international conference on Knowledge discovery and data mining. 1255–1264.

[18] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. Loganomaly: Unsuper-
vised detection of sequential and quantitative anomalies in unstructured logs. In
International Joint Conference on Artificial Intelligence.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv:1301.3781 (2013).

[20] Adam Oliner and Jon Stearley. 2007. What supercomputers say: A study of five
system logs. In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 575–584.

[21] Wenjie Pei, Tadas Baltrusaitis, David MJ Tax, and Louis-Philippe Morency. 2017.
Temporal attention-gated model for robust sequence classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6730–6739.

[22] Guosai Wang, Lifei Zhang, and Wei Xu. 2017. What can we learn from four
years of data center hardware failures?. In 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 25–36.

[23] Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao, Qinxue Meng, and Paul J Kennedy.
2016. Training deep neural networks on imbalanced data sets. In 2016 international
joint conference on neural networks. IEEE, 4368–4374.

[24] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.

[25] Min-Ling Zhang and Zhi-Hua Zhou. 2013. A review on multi-label learning
algorithms. IEEE transactions on knowledge and data engineering 26, 8 (2013).

[26] Ziming Zheng, Li Yu, Zhiling Lan, and Terry Jones. 2012. 3-dimensional root
cause diagnosis via co-analysis. In Proceedings of the 9th international conference
on Autonomic computing. ACM, 181–190.

[27] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice. IEEE, 121–130.

https://developer.nvidia.com/blog/optimizing-recurrent-neural-networks-cudnn-5/
https://developer.nvidia.com/blog/optimizing-recurrent-neural-networks-cudnn-5/
https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/1508.04025

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Related work

	3 Finding correlations between log entries
	3.1 Building the model and detecting correlations
	3.2 Using LogFlow to analyze new log entries
	3.3 Evaluation
	3.4 Example of LogFlow graph
	3.5 Discussion

	4 Efficient log parsing
	4.1 The design of LFP
	4.2 Evaluation
	4.3 Discussion

	5 Conclusion
	Acknowledgments
	References

