
ResPCT: Fast Checkpointing in Non-volatile Memory
for Multi-threaded Applications

Ana Khorguani
ana.khorguani@univ-grenoble-

alpes.fr
Univ. Grenoble Alpes, CNRS,

Grenoble INP, LIG
Grenoble, France

Thomas Ropars
thomas.ropars@univ-grenoble-

alpes.fr
Univ. Grenoble Alpes, CNRS,

Grenoble INP, LIG
Grenoble, France

Noel De Palma
noel.depalma@univ-grenoble-

alpes.fr
Univ. Grenoble Alpes, CNRS,

Grenoble INP, LIG
Grenoble, France

Abstract
Non-volatile memory (NVMM) technologies are a great op-
portunity to build fast fault-tolerant programs, as they pro-
vide persistent storage in main memory. However, since the
processor caches remain volatile, solutions are needed to
recover a consistent state from NVMM after a crash. This
paper presents ResPCT, a checkpointing approach to make
multi-threaded programs fault tolerant, by flushing persis-
tent data structures to NVMM periodically. ResPCT uses
In-Cache-Line logging to efficiently track modifications du-
ring failure-free execution, and to restore a consistent state
after a crash. The ResPCT API enables programmers to po-
sition restart points in their program, which simplifies the
identification of the persistent program state and can also
help improving performance. Experiments with representa-
tive benchmarks and applications, show that ResPCT can
outperform state-of-the-art solutions by up to 2.7×, and that
its overhead can be as low as 4% at large core count.

Keywords: non-volatile memory, fault tolerance, checkpoin-
ting, multi-threaded applications

1 Introduction
Emerging Non-Volatile MainMemory (NVMM)modules [25]
can preserve data across system reboots or crashes, while
achieving performance close to DRAM. NVMM modules
are byte-addressable. They can be plugged directly on the
memory bus, to be used as main memory and be accessed
directly through load and store instructions.

NVMM is an opportunity to build fast resilient programs.
Using it as main memory allows recovering the state of pro-
grams after a crash, without having to flush data to a slow
persistent I/O device (SSD or HDD) during failure-free exe-
cution. However, the following problems need to be solved.

First, even if NVMM is used asmainmemory, several levels
of volatile caches are present between the processor and

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Seventeenth European Conference on Computer Systems (EuroSys ’22), April
5–8, 2022, RENNES, France, https://doi.org/10.1145/3492321.3519590.

the memory to improve memory access performance. Data
written by programs are first stored in cache before being
written back to NVMM on cache line eviction. Consequently,
if no specific action is taken, parts of the program state might
still be lost in a crash if some data were only stored in the
volatile caches and not written yet to NVMM.

Second, the state stored in NVMM might be inconsistent
because data might be written back from cache to NVMM in
an order that differs from program order. To ensure that an
application can restart from a consistent state after a crash,
solutions need to be designed to guarantee either that the
state of data structures in NVMM is always consistent [30,
47] or that enough information is available on restart to
recover a consistent state [9, 33].
Controlling data movement between the cache and the

main memory requires using cache line flush and memory
fence instructions [42], but using these instructions has a
performance cost as it forces the processor to synchronize
with main memory and imposes ordering on some memory
accesses. This cost is amplified by the fact that although
NVMM provides high throughput and low latency, its per-
formance is not on par with DRAM [49].

Transaction-based solutions [8, 13, 14, 20, 32, 37, 40, 44, 48]
or other comparable approaches [6, 23, 30, 33] allow buil-
ding fault tolerant programs on top of NVMM and provide
durable linearizability [27]. In this consistency model, once
an operation has been fully executed, it is never rolled back.
It implies that all updates executed during a transaction have
to reach NVMM before the transaction can commit.
Checkpointing is an attractive alternative that allows

smoothing the cost of synchronization with NVMM by adap-
ting the duration of the checkpointing period [2, 9, 36, 45, 47].
Checkpointing approaches divide the execution of the pro-
gram into epochs and only flush modified data structures to
NVMM at the end of each epoch. The achieved consistency
model is buffered durable linearizability [27]: all operations
executed after the last checkpoint are lost in a crash. Such
a consistency criterion is sufficient for many use cases [31],
especially when epochs can be as short as a few milliseconds.
Efficient checkpointing faces two main challenges: (i) A

consistency challenge, i.e., recovering the program in a con-
sistent state after a crash, despite partial modifications that

https://doi.org/10.1145/3492321.3519590

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

might have reached NVMM during the crashed epoch; (ii) A
tracking challenge, i.e., identifying the memory locations
that have been modified, and thus, that must be flushed to
NVMM at checkpoint time [47].
This paper presents ResPCT, a solution based on check-

pointing to build fault-tolerant multi-threaded programs on
top of NVMM. ResPCT relies on In-Cache-Line Logging (In-
CLL), proposed by related work [9, 40]. InCLL implements
highly efficient undo logging, by storing the log of a datum
in the same cache line as the datum itself. This leverages the
persistency semantics of the Intel-x86 architecture [39] to
guarantee that an undo log will reach NVMM before the cor-
responding modification, without using any flush or fence
instructions. In previous works, InCLL was used to solve the
consistency challenge in a specific data structure [9] or in a
transactional system [40]. This paper uses InCLL to imple-
ment a general-purpose checkpointing solution for programs
running on top of NVMM. We describe how InCLL can be
used not only to efficiently address the consistency challenge
introduced above, but also the tracking challenge.
Our other innovation identifies the program states in

which checkpoints can be taken as Restart Points (RPs).
The programmer positions RPs in the application code. All
threads need to reach an RP before a checkpoint can be taken.
This approach has several advantages. First, we argue that it
simplifies the work of the programmer in the definition of
the recovery procedure. Indeed, providing an explicit API to
locate RPs allows us to define simple rules to identify data
structures that need to be stored in NVMM and restored
during recovery. Second, choosing the position of RPs can
help reducing the size of the state saved in NVMM, and thus
improve performance as some of our experiments show.
We have implemented a prototype of ResPCT and tested

it with basic concurrent lock-based data structures (queue,
hash table), benchmarks from multi-threaded benchmark
suites (Parsec [4], Phoenix [41]), and a popular in-memory
key-value store (Memcached [34]), on real NVMM hardware
with a 32-core processor. When checkpointing every 64 ms,
our results show that the overhead of ResPCT is below 20%
in most cases, and can even be as low as 4%, compared to
the non-fault-tolerant version of the program executed on
DRAM. Its speedup compared to the best existing solutions
is up to 2.7×.
To summarize, this paper presents a new approach to

checkpoint multi-threaded applications to NVMM, and
makes the following contributions:

• A solution based on InCLL to solve both the con-
sistency and the tracking challenges associated with
checkpointing in NVMM.
• An API for locating restart points in programs with
benefits in terms of performance and simplicity.

• An extended evaluation using both micro-benchmarks
and real applications, that shows that ResPCT can sig-
nificantly outperform all existing fault tolerant tech-
niques targeting NVMM, including other checkpoin-
ting techniques.

The rest of the paper is organized as follows. Section 2
presents the system model considered in this paper and de-
scribes the related work. Section 3 describes our algorithm.
Section 4 provides a correctness proof. Finally, Section 5
presents our experimental evaluation.

2 Background
2.1 System model and assumptions
Our system model, illustrated in Figure 1, captures the main
characteristics of existing NVMM hardware when used with
multicore x86 Intel processors [25]. It corresponds to the
App Direct mode with Intel DCPMM memory modules [25].
NVMM DIMMs are plugged on the memory bus, are byte-
addressable, and are directly accessible through load and
store instructions. The system might also include DRAM
side-by-side with NVMM. A program can explicitly choose
to store data in NVMM or DRAM.
Our goal is to ensure that a program can restart from a

consistent state after a crash, and to minimize the computa-
tion lost due to the crash. We target race-free multi-threaded
programs where synchronization between threads is man-
aged by mutex locks or condition variables. The synchro-
nization mechanisms induce a partial ordering, i.e., happens-
before relations, between the load and store instructions
executed by the different threads, as defined in the C++ me-
mory model [5]. A consistent state can be defined as one
that complies with this partial ordering.
Since we assume race-free multi-threaded programs, the

algorithm presented in Section 3 relies on the fact that con-
current writes to the same variable cannot occur. Further-
more, it does not support programs that use atomic read-
modify-write instructions to modify shared variables. Its
design is based on the assumption that any thread modifying
a shared variable holds the lock that gives exclusive access
to this variable.1 We name critical section, a section of code
protected by a mutex lock. Our algorithm is not designed to
support lock-free and wait-free algorithms.

Note that our design assumes that memory management,
as well as all accesses to shared data, are under the control
of the programmer, which implies that programs that rely
on a garbage collector are not supported.
CPU registers and caches are volatile. In contrast, we as-

sume that the memory controllers belong to the persistent

1This assumption allows us to have a very efficient solution. ResPCT could
support atomic operations but that would imply introducing locks in the
implementation, and degrading performance significantly. We prefer requir-
ing the programmers to replace atomic operations by mutex locks in their
program rather than reducing the performance of ResPCT.

ResPCT: Fast Checkpointing in Non-volatile Memory for Multi-threaded Applications EuroSys ’22, April 5–8, 2022, RENNES, France

core core
cache cache

LLC

MC

DRAM NVMM

Figure 1.Multicore processor with NVMM side-by-side with
DRAM. The persistent domain is in gray. The memory con-
troller (MC) belongs to the persistent domain while the pri-
vate cache and the shared last-level cache (LLC) are volatile.

domain, as with Intel App Direct mode [50]. A datum is per-
sistent once it has been flushed from cache. The ordering
of write operations in NVMM follows the Persistent Cache
Store Order model (PCSO) [10], as implemented by x86 ar-
chitectures. In PCSO, a cache line is written back according
to an (unknown) cache line replacement policy implemented
in hardware. Hence, after a store instruction, a datum might
reside in cache for some time and be lost in the event of a
crash. Furthermore, writes might reach NVMM in an order
not consistent with program order.
Some guarantees can be obtained on the order in which

updates reach NVMM. First, our model assumes that data
movement can be controlled using dedicated instructions. A
pwb instruction initiates write-backs at cache-line granular-
ity. This instruction is asynchronous. A psync instruction
should be issued to ensure that all preceding pwb instructions
issued by the current thread are completed. On modern x86
architectures, pwb is implemented using the clwb instruction
and psync using sfence [26]. Second, in the case of multiple
writes to the same cache line, PCSO guarantees that a write
to a cache line never reaches NVMM before any preceding
writes issued by any thread to the same cache line [10]. In
this case, no dedicated instruction needs to be used.

2.2 Related work
NVMMmodules, such as Intel Optane DCPMMmodules [25],
are available since a few years. They are persistent but much
faster than traditional storage devices such as Solid-State
Drives (SSDs) [49]. However, fault-tolerant algorithms must
be designed with care to achieve good performance because,
although NVMM can be used as a replacement of DRAM, it
is not as fast as DRAM. Namely, read latency is between 2x
and 3x higher than with DRAM. The peak read and write
bandwidth is also significantly lower [49].
Several fault-tolerant approaches built on top of NVMM

guarantee durable linearizability [27]. Durable linearizability
ensures that each operation persists in a single atomic step

between its call and its return. It implies that the state avail-
able after a crash must include all operations that completed
before the crash. To this end, each operation must include at
least one call to clwb and one call to sfence to ensure that mod-
ified data have reached NVMM before continuing [11, 40].
General solutions have been proposed to provide durable
linearizability for concurrent programs, either through per-
sistent transactional memory [8, 13, 14, 20, 32, 37, 40, 44, 48]
or through failure-atomic sections for critical sections [6, 19,
23, 30, 33, 47]. These approaches add clwb and sfence instruc-
tions on the critical path of programs, and thus, can induce
a significant performance overhead.
An alternative is to provide buffered durable lineari-

zability [27]. It ensures that the state recovered after a crash
includes a consistent subset of the operations that completed
before the crash. Systems implementing this consistency
model are typically based on checkpoints [9, 19, 29, 36, 45,
47]: they divide the program execution into epochs and flush
all updates to NVMM at the end of each epoch. Flushing up-
dates periodically amortizes the cost of synchronizing with
NVMM. Hence, such approaches aim at providing a different
trade-off between performance and consistency.
Because the hardware might write a modification back

from cache to memory at any moment, all the solutions listed
above, including the systems implementing durable lineari-
zability, need to support rollbacks of partial updates after a
crash. The two main approaches are undo logging [8] or redo
logging [18, 44]. Both have performance drawbacks [29, 50]:
Undo logging requires extra synchronization with NVMM to
write the log; Redo logging imposes read redirection. Some
techniques have been proposed by durably linearizable sys-
tems to improve performance. Pronto [33] implements ope-
ration logging, whereas Clobber-NVM [48] significantly re-
duces the size of the undo log, by logging only the variables
that are both in the read set and in the write set of a trans-
action. We include a comparison with Clobber-NVM in our
experimental evaluation. The results show that ResPCT can
be significantly faster.2

To avoid the overhead of undo logging with checkpointing
solutions [19], alternative approaches targeting specific data
structures have been suggested [9, 36]. Cohen et al. [9] intro-
duce In-Cache-Line Logging as an extremely efficient undo
log, for a Masstree data structure. InCLL locates the undo log
of a datum in the same cache line as the datum itself. It takes
advantage of the PCSO semantics for writes to the same
cache line, to log without using clwb or sfence instructions.
Using InCLL, Cohen et al. achieve unprecedented perfor-
mance for this specific data structure. But the algorithm they
propose is tailored to Masstree. To the best of our knowledge,
ResPCT is the first general-purpose checkpointing algorithm

2We also evaluated Pronto, but because its performance is not as good as
Clobber-NVM, it is not included in this paper.

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

using InCLL that ensures buffered durable linearizability for
an arbitrary lock-based concurrent program.
InCLL has also been studied in the implementation of

a persistent transactional memory [40]. The two proposed
algorithms, Trinity and Quadra, achieve very high perfor-
mance and guarantee durable linearizability. ResPCT is de-
signed for a different trade-off: higher performance but with
buffered durable linearizability.
Since they are also general approaches that implement

checkpointing, PMThreads [47] and Montage [45] are the
two systems the most similar to ResPCT. To avoid the cost
of logging, PMThreads maintains a shadow copy of the per-
sistent data structures in DRAM. During an epoch, updates
are written only to DRAM. All modifications are copied
to NVMM at the end of the epoch. Working with data in
DRAM can be beneficial since DRAM is faster. However,
PMThreads has to track the modifications made during an
epoch, to be able to copy them to NVMM when the epoch
ends. PMThreads implements two solutions for this tra-
cking [47]: (i) intercepting store instructions, and (ii) relying
on the OS page protection mechanism. Both have a non-
negligible overhead. ResPCT also needs to track modifica-
tions, but it uses a strategy that takes advantage of InCLL to
implement very efficient tracking.
To avoid the cost of logging, Montage [45] uses Copy-

on-Write (CoW): any update in NVMM requires allocating
a new object. This strategy also eases tracking: Montage
provides a dedicated API for memory allocation in NVMM,
and modification tracking is implemented as part of the
allocation function. To avoid a cascade of updates for data
structures based on pointers, pointers are only maintained
in DRAM but sufficient metadata are stored in NVMM to
reconstruct indexes after a crash.3 As our evaluation shows,
the main difference between Montage and ResPCT is that
ResPCT puts less stress on the memory allocator, and does
not introduce extra metadata.
In checkpointing approaches, another important design

choice is to decide when checkpoints can be taken. To ensure
correctness, checkpoints should be allowed only in states
where happens-before relations can be maintained even after
a crash. The simplest way to ensure this, is to guarantee that
checkpoints cannot occur as long as a thread is in a critical
section [19]. Beyond this constraint, existing approaches do
not define any specific rules regarding the states in which
checkpoints can be taken. For instance, with PMThreads,
the state of a thread can be checkpointed at the end of any
critical section [47].

ResPCT opts for a different strategy. It introduces an API
that allows programmers to explicitly position Restart Points
(RPs) in their code to identify states where checkpoints can

3For instance, to implement a FIFO queue, all items are identified by a global
sequence number stored in NVMM. This sequence number is used during
recovery to figure out the order of the elements in the queue.

occur. Such an approach is inspired from solutions that imple-
ment application-level checkpointing in parallel distributed
systems [3]. As discussed in more details in Section 3.3, we
think that positioning RPs in the program code is a simple
task that ultimately simplifies the job of a programmer in
making her program fault tolerant. As demonstrated by our
evaluation, it also helps improving performance by reducing
the size of the persistent state.

3 Algorithm
This section starts by providing an overview of our algorithm
in Section 3.1. Section 3.2 details the mechanisms used to
ensure consistency and Section 3.3 presents Restart Points.

3.1 Design overview
ResPCT is a solution based on checkpointing to make multi-
threaded programs fault tolerant. It divides the execution of
the program into epochs. During an epoch, the algorithm
does not constraint the order in which updates reach me-
mory. For instance, assume the insertion of an element in a
list. ResPCT allows the pointers of the list to be updated in
NVMM (due to cache line eviction) without the new element
being persisted yet. ResPCT does not execute any cache line
flush or memory fence instructions during normal execution
to order writes to NVMM.

At the end of each epoch, ResPCT executes a checkpoint
procedure that flushes the updates made during the epoch to
NVMM. To ensure that this state is consistent, threads may
not progress while the checkpoint is being taken.

ResPCT has to solve a consistency and a tracking challenge.
The consistency challenge is to be able to roll back any partial
updates that have reached NVMM during an epoch that
crashes. To solve this issue, ResPCT adopts In-Cache-Line
Logging [9]. It simply locates the undo log for a variable in
the same cache line as the variable itself, which guarantees
that if a variable update reaches NVMM, the corresponding
undo log is written to NVMM as well. Hence, ResPCT does
not execute any flush or fence instruction to implement
logging. Such an approach is key to achieve high failure-free
performance on NVMM.

The tracking challenge is to identify the memory locations
that have been modified during the current epoch, to be able
to flush all of them at checkpoint time. To do this efficiently,
ResPCT takes advantage of InCLL. Since InCLL stores the
epoch in which a variable has last been modified next to
the variable, ResPCT uses this information to implement
efficient tracking.

Two more inter-dependent points need to be addressed to
make a program fault tolerant using checkpointing: (i) iden-
tifying program states in which a checkpoint may be taken;
(ii) identifying the subpart of the program state that needs
to be made persistent to be able to restart after a crash.

ResPCT: Fast Checkpointing in Non-volatile Memory for Multi-threaded Applications EuroSys ’22, April 5–8, 2022, RENNES, France

To address these issues, ResPCT provides an API that en-
ables programmers to explicitly position Restart Points in the
program. At the end of the epoch, ResPCT waits until each
thread reaches an RP before actually taking the checkpoint
and moving to the next epoch. Requiring the programmer
to position RPs might sound difficult or inconvenient. But
our experiments show that it is a simple task.

Positioning RPs manually has several advantages that we
detail in Section 3.3. The position of RPs in the code dictates
which data belong to the persistent state, and which data
require logging. Hence, by choosing where to place RPs,
the programmer can reduce the size of the persistent state
and/or the need for logging, and improve performance (see
the detailed evaluation in Section 5.3).

We detail the ResPCT algorithm in the following. We start
by describing how it ensures that a consistent state is reco-
vered after a crash. Then, we present the concept of Restart
Point, its implementation and its use in practice. The main
data structures and variables used by the ResPCT algorithm
are presented in Figure 2 and Figure 3, the algorithm itself is
presented in Figure 4 and Figure 5. We summarize the API
of ResPCT is Table 1, and describe it in more details as we
present the algorithm.

3.2 Ensuring consistency
Our approach relies on periodic checkpoints that divide the
program execution into successive epochs. A checkpoint
flushes all the memory locations that belong to the persistent
state and that have been modified during the current epoch
by calling flush_modified() (Lines 14-18 in Figure 4). The
checkpoint procedure increases the global variable epoch
(the current epoch number) and flushes it by executing the
clwb instruction followed by a fence to persist it in NVMM
(Lines 56-58). Thus, if a failure occurs, a recovery procedure
can easily identify the epoch that crashes.

As detailed in Section 3.3, ResPCT ensures that all program
threads are blocked at restart points when the checkpoint is
taken. This ensures that the state that is flushed is consistent.
It also guarantees that the epoch number can be incremented
safely in the checkpoint procedure.

During an epoch, as the program modifies data structures,
it is possible that only partial updates reach NVMM. Updates
that are only in the cache will be lost in the event of a failure.
To be able to reconstruct a consistent state during recovery,
ResPCT relies on undo logging implemented using In-Cache-
Line Logging as described in the following.

3.2.1 In-Cache-Line Logging. To implement undo log-
ging, our algorithm logs the current value of a memory loca-
tion before it is modified for the first time in each epoch. In
the event of a failure, the recovery procedure can undo all the
modifications made during the crashed epoch by replacing
them with the logged values. If the same memory location is

ResPCT API Description
InCLL_data<T> Template for InCLL variables
init_InCLL(InCLL_data<T>
*l, T val)

Initializes InCLL for variable
l

update_InCLL(InCLL_data<T>
*l, T val)

Updates variable l and its log

add_modified(void *addr) Registers the address of a
modified variable

RP(int id) Identifies a Restart Point
checkpoint_allow/prevent(...) Allows/prevents checkpoint

occurrence

Table 1. ResPCT API

updated several times during an epoch, no action needs to
be taken for the later modifications.
To be correct, the algorithm must ensure that the log is

updated in NVMM before the corresponding memory lo-
cation. Undo logging is usually implemented as a separate
data structure [8], which implies using costly flush and fence
instructions. To avoid this cost, ResPCT leverages In-Cache-
Line Logging proposed by Cohen et al. [9].
InCLL places a log entry in the same cache line as the

memory location that requires logging. More specifically,
Figure 2 presents the template used to create a variable con-
trolled by InCLL. It includes three fields: (i) record contains
the current value of the variable, (ii) backup is the logged
value of the variable before it is modified at the beginning
of the epoch, and (iii) epoch_id stores the identifier of the
corresponding epoch. By storing the log entry in the same
cache line as the variable itself, InCLL leverages the property
of the PCSO model that states that two writes to the same
cache line reach NVMM in program order. This guarantees
that the updated value will not reach NVMM before the cor-
responding log entry, without any flush or fence instruction.
Note that, to use InCLL for data structures with multiple
fields, InCLL is simply applied to each field separately. No
further modification is required under the assumption that
the original program is race-free.

One could argue that including log entries next to the vari-
ables themselves will have a negative impact on memory and
cache footprint. To avoid this problem, Cohen et al. [9] use
only a small number of InCLL backup entries for multiple
variables, and move back to traditional undo logging if all
InCLL entries are used. To remain a generic solution, ResPCT
has a backup entry per variable. Note however that memory
footprint does not necessarily increase much. First, the num-
ber of memory locations that require logging is often small
as it concerns only a subset of the persistent variables (as
we explain in Section 3.3.2). Second, padding is often used in
shared data structures to avoid false sharing, which provides
empty space to store InCLL fields.

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

1 struct InCLL_data<T>:
2 T record;
3 T backup;
4 uint64_t epoch_id;

Figure 2. InCLL template

5 /* Global variables */

6 bool timer = False;
7 uint64_t epoch;
8 bool perThread_flag[NB_THREADS] = {F, F, ...};
9 list<void*> to_be_flushed;
10 /* Local variables */

11 InCLL_data<int> *RP_id;

Figure 3. Global and local variables

The InCLL API is based on two functions. The
init_InCLL() function is called after allocating a variable
to initialize its InCLL fields (Figure 4, Lines 19-23). The
update_InCLL() function replaces the usual store instruc-
tion to update a variable with logging (Lines 24-29). It tests
epoch_id to check whether it is the first update of the vari-
able in the current epoch. If so, it copies the current value
of record in backup, writes the current epoch number in
epoch_id, and finally, updates record.
The code of update_InCLL() would not be correct if

a situation where two threads would call it on the same
variable concurrently, could occur. However, our design re-
lies on the assumptions presented in Section 2.1 to avoid
dealing with this case. It assumes that when a thread calls
update_InCLL() on a shared variable, it necessarily holds
the corresponding lock.
After a crash, the recovery procedure executed by Res-

PCT is simple (Figure 5, Lines 60-65). It starts by retrieving
the value of the failed epoch from NVMM, and for every
variable 𝑟 stored in NVMM with InCLL, it verifies if it was
modified during the failed epoch (Line 63). If so, the variable
is re-initialized from backup. This is sufficient to ensure that
all variables in NVMM will be restored to the state at the
beginning of the crashed epoch.

3.2.2 Tracking modifications. As mentioned earlier, at
the end of each epoch, the state is flushed to NVMM. Res-
PCT aims to flush only the cache lines that correspond to
memory locations modified during the epoch. Hence, Res-
PCT maintains a list (to_be_flushed) of updated memory
locations. The algorithm should avoid inserting the same
address multiple times if it is modified several times during
an epoch. Furthermore, it should avoid iterating through the
list to find duplicates, for obvious performance reasons.
Thanks to InCLL, ResPCT solves this problem simply.

It knows if a persistent variable is updated for the first
time in an epoch using the corresponding InCLL epoch_id

12 add_modified(void *addr):
13 to_be_flushed.append(addr);

14 flush_modified():
15 for (l in to_be_flushed):
16 clwb(l);
17 sfence();
18 to_be_flushed.empty();

19 init_InCLL(InCLL_data<T> *l, T val):
20 l->record = val;
21 l->backup = val;
22 l->epoch_id = epoch;
23 add_modified(l);

24 update_InCLL(InCLL_data<T> *l, T val):
25 if(l->epoch_id != epoch):
26 l->backup = l->record;
27 l->epoch_id = epoch;
28 add_modified(l);
29 l->record = val;

30 checkpoint_allow():
31 perThread_flag[𝑇𝑖] = True;

32 checkpoint_prevent(mutex_t * mutex):
33 perThread_flag[𝑇𝑖] = False;
34 if(timer):
35 perThread_flag[𝑇𝑖] = True;
36 unlock(mutex);
37 while(timer){;}
38 lock(mutex);
39 perThread_flag[𝑇𝑖] = False;

40 RP(int id):
41 update_InCLL(RP_id, id);
42 if(timer):
43 perThread_flag[𝑇𝑖] = True;
44 while(timer){;}
45 perThread_flag[𝑇𝑖] = False;

46 checkpoint(): // called periodically

47 timer = True;
48 flag = True;
49 while(flag):
50 flag = False;
51 for(k in 0..NB_THREADS):
52 if(!perThread_flag[k]):
53 flag = True;
54 break;
55 flush_modified();
56 epoch++;
57 clwb(&epoch);
58 sfence();
59 timer=False;

Figure 4. Description of the algorithm for thread 𝑇𝑖

field. Hence, in the algorithm, the add_modified() function,
that adds an address to the to_be_flushed list, is called by
update_InCLL() only for the first update of a variable in
each epoch (Figure 4, Line 28).

ResPCT: Fast Checkpointing in Non-volatile Memory for Multi-threaded Applications EuroSys ’22, April 5–8, 2022, RENNES, France

60 recovery():
61 Load failed_epoch from NVMM
62 for (l : variable in NVMM with InCLL):
63 if(l.epoch_id == failed_epoch):
64 l.record=l.backup;
65 epoch = failed_epoch;

Figure 5. Recovery procedure

Note that some data stored in NVMM do not require log-
ging, as detailed in Section 3.3.2. To persist such data, the
programmer must position add_modified() directly in the
program code, right after the write operation. In this case,
the same assumptions as for the calls to update_InCLL()
apply. Namely, concurrent calls to add_modified() for the
same variable cannot occur by construction.

3.3 Restart Points and persistent state
Identifying the program states where a checkpoint is al-
lowed to be taken is important. Indeed, the identification of
the persistent state, i.e., which variables must be stored in
NVMM, depends on it. The end of a period may occur at
arbitrary times. If a checkpoint could be executed without
any constraints on the program counter of each thread, ev-
ery variable would have to be part of the persistent state to
enable recovery in all cases.

A well known constraint for programs using locks is that
checkpoints must not occur when a thread is in a critical
section [6, 47]. With this constraint, a system can recover a
consistent state after a crash without having to include the
state of locks in the persistent state. This avoids having to
deal with problems such as lock ownership recovery [30].

Existing approaches targeting lock-based applications as-
sume that the persistent state only includes the shared data
structures protected by locks [6, 23, 30, 47, 48]. If this is
not the case, the programmer must explicitly manage the
additional variables to be included in the persistent state du-
ring normal execution and at restart. This approach is good
enough for programs that manipulate mostly shared data
structures (e.g., a key-value store). However it is not practical
for more compute-intensive programs (e.g., data processing
and machine learning programs). In this case, defining the
persistent state is mostly the responsibility of the program-
mer since most persistent variables are not shared variables.

ResPCT provides an API to position Restart Points in the
source code of a program, as detailed in the following. The
programmer positions RP() calls in her program, and then
identifies the variables that belong to the persistent state.

3.3.1 Restart Points. The semantics of RP() enforces two
properties. First, it ensures that a checkpoint occurs only
when all threads have reached a restart point (Line 43 and
Lines 49-54). Second, it blocks threads in RP() as long as
the checkpoint is running (Line 44). The latter guarantees

a quiescent state when the checkpoint is taken [43]. Note
that these properties do not restrict parallelism between the
program threads beyond synchronizing at checkpoints.
The RP() function takes as parameter an identifier that

must be unique for each RP() call and the same in every
run of the program. At checkpoint time, a thread stores
this identifier in the thread-local variable RP_id located in
NVMM (Figure 4, Line 41). This information is used during
recovery to resume execution from the same point. Note that
the variable RP_id itself requires InCLL to be able to roll
back it if a crash occurs while checkpointing.

3.3.2 Identifying persistent state. It is programmer’s
responsibility to identify the persistent state of the program.
After the programmer has positioned RPs, she deduces which
variables must persist as we explain below. Our experiments
with modifying existing programs (see Section 5) show that
this task is not complex.

There are two constraints to the positioning of RPs. First,
an RPmay not be inside a critical section. Second, all program
threads must eventually encounter an RP. This is essential
to ensure that a checkpoint is eventually taken.
Once the RPs have been positioned, the following rules

identify the variables that belong to the persistent state
and/or require InCLL. The rules are: (i) If the scope of a
variable includes an RP, then it belongs to the persistent
state; (ii) If, after an RP, the first operation on the persistent
variable is a read and the variable gets modified at any later
point in the program, then the variable requires logging.
More technically, the second rule states that logging

should be applied to any persistent variable that makes a
sub-part of the program starting from an RP not idempotent.

A sub-part of a program is not idempotent if the sequence
of operations on a variable starts with a write-after-read
(WAR) dependency. Table 2, inspired from the explanations
provided by Kruijf et al. [15], illustrates the notion of read-
after-write (RAW) andWAR dependencies, and their relation
to idempotence. The RAW sequence of instructions is idem-
potent since executing it multiple times will always lead to
the same result. On the other hand, assuming that the initial
value of 𝑥 is 0, executing the WAR sequence a second time,
would lead to 𝑦 = 8 instead of 𝑦 = 0. Hence, re-executing the
WAR sequence after a crash requires logging to be able to
roll back 𝑥 to its initial value.

RAW WAR
Sequence x = 5

y = x
y = x
x = 8

Idempotent? Yes No
Table 2. RAW and WAR dependencies

We use the code snippet presented in Figure 6, that com-
putes 𝑥𝑝 , to illustrate these rules. Figure 6a is a version of
the code where multiple RPs have been inserted. Figure 6b

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

shows the ResPCT version of the code. It assumes that an
alloc_in_nvmm() function is available to allocate variables
in NVMM. Note that this example is not very realistic, as
several RPs have been inserted in a code snippet that in-
cludes few instructions. Positioning RPs in this way is done
for illustrative purposes.
In this example, all variables except 𝑖 must be stored in

NVMM. If a thread restarts from the RP at Line 4, variable 𝑖
will be reinitialized, and if it restarts from the RP at Line 7,
it is not needed anymore.
Variable 𝑥 requires logging, because the sequence of in-

structions between lines 4 and 7 is not idempotent. Without
InCLL, if a thread restarts from the RP at Line 4, there is no
guarantee on the value that will be returned by the read ope-
ration at Line 6. It could be the initial value of 𝑥 or some 𝑥𝑖 .
In the latter case, the code snippet will incorrectly compute
𝑥𝑖+𝑝 instead of 𝑥𝑝 after the crash. On the other hand, variable
𝑝 does not require logging, as it does not introduce anyWAR
dependency: 𝑝 is written only once and never modified. As
illustrated in Figure 6b, Line 6, the programmer needs to call
add_modified() explicitly when such variables is modified.

Figure 6 can be used to illustrate that carefully positioning
RPs can reduce the size of the consistent state and limit the
need for logging. Removing the RP at Line 4 would remove
variable 𝑝 from the persistent state. If the whole snippet was
only surrounded by two RPs, no variable would need logging.
It is tempting to conclude from this example that inserting
as few RPs as possible is the best solution to improve perfor-
mance. However, the programmer should still insert enough
RPs to ensure that checkpoints are not delayed significantly
after the end of the period.

3.3.3 Handling condition variables . ResPCT also sup-
ports condition variables for thread synchronization. How-
ever it should be handled with care to avoid deadlocks, since
threads can be blocked waiting on a condition variable. All
threads must reach an RP for a checkpoint to complete. The
threads that reached an RP are blocked until the checkpoint
completes. If the only way for a thread waiting on a condi-
tion variable to be woken up, is to be signaled by one of the
thread that is blocked on an RP, a deadlock occurs.
ResPCT provides an API to deal with this problem. The

programmer must follow two rules illustrated in Figure 7:
(i) surrounding wait calls on condition variables with a
checkpoint_allow() and a checkpoint_prevent() call,
and (ii) positioning an RP immediately before entering the
critical section.
The checkpoint_allow() call ensures that a thread

does not prevent a checkpoint from completing, while the
thread is waiting at cond_wait(). After cond_wait()
returns, before resuming the program execution,
checkpoint_prevent() disables the occurrence of
checkpoints (Line 33 of Figure 4). However, it checks timer
to detect whether there is an ongoing checkpoint (Line 34).

1 RP(id1);
2 int x=2
3 int p = 10
4 RP(id2)
5 for(int i=0; i<p; i++):
6 x = x*x
7 RP(id3)
8 print(x)

(a) Code with RPs

1 RP(id1)
2 InCLL_data<int> x= ←↪

alloc_in_nvmm()
3 init_InCLL(&x, 2)
4 int p = alloc_in_nvmm()
5 p=10
6 add_modified(&p)
7 RP(id2)
8 for(int i=0; i<p; i++):
9 update_InCLL(&x, x*x)
10 RP(id3)
11 print(x)

(b) Final code with logging

Figure 6. Example of code with ResPCT

1 RP();
2 lock(mutex);
3 while(...):
4 checkpoint_allow();
5 cond_wait(..., mutex);
6 checkpoint_prevent(mutex);
7 ...
8 unlock(mutex);

Figure 7. Code with a condition variable

ResPCT may have initiated a checkpoint while the thread
was blocked in cond_wait(). If so, the thread must wait
for this checkpoint to end. Hence, checkpoint_prevent()
allows the checkpoint occurrence (Line 35), waits until it is
finished, and revokes the permission afterwards (Line 39).
Additionally, note that checkpoint_prevent() takes a

lock as input parameter. Indeed, while it is waiting for the
ongoing checkpoint to terminate, checkpoint_prevent()
must temporarily release the lock grabbed at cond_wait()
to avoid a similar deadlock scenario as described earlier. The
lock is re-acquired after the checkpoint ends (Lines 36-38).
Calling RP() immediately before the critical section, en-

sures that if a checkpoint completes while a thread waits on
the condition variable and a crash occurs, the thread restarts
from the entrance of the critical section. Otherwise, it would
restart from the preceding RP and re-execute the instruc-
tions between the RP and the beginning of the critical section.
However, the recoverywould not roll back the corresponding
updates since they occurred before the checkpoint.
This way of handling condition variables is correct only

if the program does not execute any store instruction be-
tween the entrance of the critical section and the call
to cond_wait(). Otherwise, these updates would be re-
executed, although other threads might have already seen
them. However, we posit that most algorithms based on con-
dition variables start a critical section by checking if it should
wait on the condition variable. As such, our design covers
most of the practical use cases.

ResPCT: Fast Checkpointing in Non-volatile Memory for Multi-threaded Applications EuroSys ’22, April 5–8, 2022, RENNES, France

Note that this approach can be generalized to any blocking
function call. To deal with a blocking function call outside a
critical section, the programmer can use a simplified version
of checkpoint_prevent() that does not manipulate locks.

4 Proof
Due to space constraints, we only provide here a sketch
of the proof. The proof is in two parts. First, it shows that
a deadlock-free program modified with ResPCT remains
deadlock-free. Then, it demonstrates that ResPCT provides
buffered durable linearizability.
The proof assumes that ResPCT is applied to a lineariz-

able algorithm 𝐴 as defined in [22]. In an execution of 𝐴,
synchronizations between threads create happens-before re-
lation, noted ≺, between memory accesses, as defined in the
C++ memory model [5]. Given a memory location 𝑙 stored
in NVMM, we note 𝑁𝑉 (𝑙) its value in NVMM and 𝑉 (𝑙) its
value taking into account the most recent update that might
not have reached NVMM yet. With ResPCT, the execution
of the algorithm is divided into epochs. Epochs are identi-
fied by a monotonically increasing sequence number. The
value of 𝑙 in NVMM during epoch 𝑖 is noted 𝑁𝑉𝑖 (𝑙). Note
that 𝑁𝑉𝑖 (𝑙) might change several times during an epoch. We
note 𝑁𝑉 𝑒𝑛𝑑

𝑖 (𝑙), the last value assigned to 𝑙 in NVMM during
epoch 𝑖 . The epoch changes when the global variable 𝑒𝑝𝑜𝑐ℎ
is incremented (Line 56 of Figure 4).

4.1 Liveness
We assume that the original algorithm A is deadlock-free and
that the only synchronization mechanisms used in algorithm
𝐴 are mutex locks.4 We also assume that the algorithm is
correctly modified to apply ResPCT. RPs are positioned so
that all threads eventually call RP() and RPs are not inserted
inside critical sections.
To prove that the algorithm is deadlock-free, we have

to show that no thread will remain blocked forever when
the checkpoint procedure starts. To this end, we introduce
two lemmas related to the behavior of RP() when the
checkpoint() procedure executes.

Lemma 4.1. After the checkpoint() procedure starts exe-
cuting, every thread eventually calls RP().

Proof. The call to checkpoint() only blocks threads in calls
to RP(). Since RPs are not inserted inside critical sections,
no thread is prevented from releasing a lock. As algorithm A
is deadlock-free, threads cannot be blocked infinitely at the
entrance of a critical section. Therefore, they will eventually
reach the RP() calls. □

Lemma 4.2. After the checkpoint() procedure starts exe-
cuting, any thread that calls RP() is blocked.

4The proof can be trivially extended to the case of condition variables, as
long as the modifications specified in Section 3.3.3 are applied.

Proof. It follows directly from the construction of the algo-
rithm (see Lines 44 and 47 of Figure 4). □

These two lemmas imply that when the checkpoint proce-
dure is called, it will eventually terminate. It is the necessary
condition to conclude that:

Proposition 4.3. An algorithm modified with ResPCT is
deadlock-free.

4.2 Buffered durable linearizability
The proof focuses on memory locations that correspond
to data stored in NVMM. It assumes that algorithm 𝐴 was
modified according to the rules defined in Section 3. All data
required to restart 𝐴 are stored in NVMM, and InCLL is
applied to all locations that require logging.
The proof is in two steps. First, we present lemmas that

allow concluding about the consistency of the state flushed
to NVMM at the end of each epoch. Then, we focus on the
rollback of partial updates that might have reached NVMM.
This invariant on epoch changes follows directly from

Lemmas 4.1 and 4.2:

Invariant 4.4. When the global variable 𝑒𝑝𝑜𝑐ℎ is updated
(line 56), all threads are blocked in function RP().

We note 𝑅𝑃𝑖 (𝑡), the call to RP() by thread 𝑡 that allows
𝑒𝑝𝑜𝑐ℎ to be updated to value 𝑖 + 1, and 𝐼𝑛𝑐𝑟𝑖 (𝑒𝑝𝑜𝑐ℎ) the
memory operation that updates 𝑒𝑝𝑜𝑐ℎ to 𝑖 + 1. Any load or
store operation issued by a thread belongs to a single epoch.
We note 𝐸 (𝑜𝑝), the epoch of operation 𝑜𝑝 .

Invariant 4.4 implies that 𝑅𝑃𝑐𝑎𝑙𝑙𝑖 (𝑡) ≺ 𝐼𝑛𝑐𝑟𝑖 (𝑒𝑝𝑜𝑐ℎ) ≺
𝑅𝑃𝑒𝑥𝑖𝑡𝑖 (𝑡), where 𝑅𝑃𝑐𝑎𝑙𝑙 and 𝑅𝑃𝑒𝑥𝑖𝑡 are the entrance (Line 40)
and the exit (Line 45) of function RP(). Using these happens-
before relations, we deduce the following lemma:

Lemma 4.5. ∀𝑜𝑝1, 𝑜𝑝2, two memory operations such that
𝑜𝑝1 ≺ 𝑜𝑝2, if 𝐸 (𝑜𝑝2) = 𝑖 then 𝐸 (𝑜𝑝1) ≤ 𝑖 .

Proof. We prove this by contradiction.We assume that thread
𝑡1 executes 𝑜𝑝1, thread 𝑡2 executes 𝑜𝑝2, and 𝐸 (𝑜𝑝1) > 𝑖 . In-
variant 4.4 implies that 𝐼𝑛𝑐𝑟𝑖 (𝑒𝑝𝑜𝑐ℎ) ≺ 𝑅𝑃𝑒𝑥𝑖𝑡𝑖 (𝑡1) ≺ 𝐸 (𝑜𝑝1).
Since 𝐸 (𝑜𝑝2) = 𝑖 , 𝐸 (𝑜𝑝2) ≺ 𝑅𝑃𝑐𝑎𝑙𝑙𝑖 (𝑡2) ≺ 𝐼𝑛𝑐𝑟𝑖 (𝑒𝑝𝑜𝑐ℎ). This
implies that 𝑜𝑝2 ≺ 𝑜𝑝1, which is a contradiction. □

Lemma 4.5 states that the volatile memory state at the end
of epoch 𝑖 is a consistent cut of the history of the memory
operations during the execution of algorithm A.
Then, we introduce Lemma 4.6. It states that all updates

executed during an epoch reach NVMM at the end of the
epoch.

Lemma4.6. ∀𝑙 such that𝑉𝑖 (𝑙) ≠ 𝑁𝑉 𝑒𝑛𝑑
𝑖−1 (𝑙), then𝑁𝑉 𝑒𝑛𝑑

𝑖 (𝑙) =
𝑉 𝑒𝑛𝑑
𝑖 (𝑙).

Proof. Invariant 4.4 implies that no store operation executes
concurrently with the increment of the global variable 𝑒𝑝𝑜𝑐ℎ.
By construction, calling update_InCLL() is the only way

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

to update memory locations. The first time a location is
updated in epoch 𝑖 by thread 𝑡 , its address is added to the
to_be_flushed list (Line 28 of Figure 4) before thread 𝑡

calls RP(). Since, flush_modified() is called immediately
before 𝑒𝑝𝑜𝑐ℎ is updated to 𝑖 + 1 (Line 55), this concludes the
proof. □

Finally, we conclude about the consistency of the state
written to NVMM at the end of each epoch.

Lemma 4.7. The memory state in NVMM at the beginning
of epoch 𝑖 corresponds to a linearizable execution of 𝐴 up to
the end of epoch 𝑖 − 1.

Proof. It follows directly from the lemmas 4.5 and 4.6. □

To reason about the rollback of partial updates, we start
by introducing two lemmas about properties of InCLL fields.

Lemma 4.8. Given a store operation that assigns value 𝑥 to 𝑙
in epoch 𝑖 , if 𝑁𝑉𝑖 (𝑙) = 𝑥 , then 𝑁𝑉𝑖 (𝑙 .𝑒𝑝𝑜𝑐ℎ_𝑖𝑑) = 𝑖 .

Proof. The proof follows directly from the construction of
the algorithm (see Lines 24-29 of Figure 4) and the properties
of the PCSO model (defined in Section 2.1). □

Lemma 4.9. Given a location 𝑙 modified in epoch 𝑖 , if
𝑁𝑉𝑖 (𝑙 .𝑒𝑝𝑜𝑐ℎ_𝑖𝑑) = 𝑖 , then 𝑁𝑉𝑖 (𝑙 .𝑏𝑎𝑐𝑘𝑢𝑝) = 𝑁𝑉 𝑒𝑛𝑑

𝑖−1 (𝑙).

Proof. The fact that 𝑁𝑉𝑖 (𝑙 .𝑏𝑎𝑐𝑘𝑢𝑝) is always updated before
𝑁𝑉𝑖 (𝑙 .𝑒𝑝𝑜𝑐ℎ_𝑖𝑑) follows from the same arguments as used
for Lemma 4.8. The fact that 𝑁𝑉𝑖 (𝑙 .𝑏𝑎𝑐𝑘𝑢𝑝) is updated to
𝑁𝑉 𝑒𝑛𝑑

𝑖−1 (𝑙) is a direct consequence of Lemma 4.6. □

About the recovery procedure, we state that:

Lemma 4.10. After a crash in epoch 𝑖 , at the end of the re-
covery procedure, ∀𝑙 : 𝑉 (𝑙) = 𝑁𝑉 𝑒𝑛𝑑

𝑖−1 (𝑙).

Proof. We distinguish between two cases. For a me-
mory location 𝑙 , either (a) 𝑁𝑉 (𝑙 .𝑒𝑝𝑜𝑐ℎ_𝑖𝑑) < 𝑖 , or
(b) 𝑁𝑉 (𝑙 .𝑒𝑝𝑜𝑐ℎ_𝑖𝑑) = 𝑖 .

In case (a), 𝑉 (𝑙) will be equal to 𝑁𝑉 (𝑙) (Figure 5 Line 63).
Since 𝑁𝑉 (𝑙 .𝑒𝑝𝑜𝑐ℎ_𝑖𝑑) < 𝑖 , 𝑁𝑉 (𝑙) was not modified in epoch
𝑖 (Lemma 4.8). Lemma 4.6 implies that 𝑁𝑉 (𝑙) = 𝑁𝑉 𝑒𝑛𝑑

𝑖−1 (𝑙),
which concludes the proof for this case.

In case (b), the recovery procedure sets 𝑉 (𝑙) to
𝑁𝑉𝑖 (𝑙 .𝑏𝑎𝑐𝑘𝑢𝑝) (Line 64). It follows directly from Lemma 4.9
that 𝑉 (𝑙) = 𝑁𝑉 𝑒𝑛𝑑

𝑖−1 (𝑙). □

Lemma 4.10 states that ResPCT will roll back all updates
issued during a failed epoch that have reached NVMM. To-
gether with Lemma 4.7, it leads to the following proposition:

Proposition 4.11. A linearizable algorithm 𝐴 running with
ResPCT is buffered durably linearizable.

5 Evaluation
In this section we evaluate ResPCT using micro benchmarks
and compare it with other techniques. We analyze its failure-
free performance, study the impact of the checkpoint fre-
quency, and evaluate its recovery time. We also present the
results of applying ResPCT to real-world workloads.

Implementation. We implemented a prototype of ResPCT
as a shared library in C. To achieve high performance and
ensure correctness, we paid special attention to cache line
alignment5 and false sharing. We also used compiler fences
to avoid the reordering of instructions in update_InCLL().
A per-thread list implements the to_be_flushed list. As
suggested in [46], a pool of flusher threads flushes data to
NVMM in parallel during checkpoints.

Experimental setup. We use a dual socket Linux machine,
equipped with 384 GiB of DRAM, 1.5 TiB (12×128 GB) of
Intel’s Optane DC Persistent Memory [25] and two 16-core
(32 hardware threads) Intel Xeon Gold 5218 processors with
a 2.30GHz frequency. We disabled Turbo Boost Frequency.
The Linux kernel version is 5.4. We compiled the programs
using gcc 9.2.1 with the highest level of optimization.

We use NVMM DIMMs in direct-access (DAX) mode and
configure them in system-ram mode [38] to access NVMM
as a separate NUMA node. To avoid performance variations
due to NUMA effects, we evenly distribute threads between
the two processors. Furthermore, to improve locality, we use
a one-to-one mapping between the program threads and the
flusher threads, and pin them to the same cores.

All presented results are averaged over 10 runs. Since the
standard deviation is below 5% for all experiments, we did
not include this information in the graphs to avoid clutter.
If not mentioned otherwise, experiments are run with 64ms
checkpoint intervals.

5.1 Micro Benchmarks
We select two concurrent data structures to extensively com-
pare ResPCT with other systems: a Queue and a HashMap.
We implement a queue protected by one lock. The size of
the elements is 8 bytes. For the HashMap, we use the code
from the Synch framework [28]. It uses one lock per bucket.
The size of the keys and the values is again 8 bytes. These
two data structures enable us to test different patterns. The
HashMap provides a lot of parallelism while the Queue in-
duces a lot of contention on the lock. The algorithms are
implemented using pthread mutex locks.
These experiments compare ResPCT to other systems.

Our evaluation includes two state-of-the-art solutions for
buffered durable linearizability: Montage and PMThreads.
It also includes two solutions that implement durable li-
nearizability: Clobber-NVM and Quadra/Trinity. Finally,
for each data structure, we consider specific algorithms: a

5Leveraging posix_memalign() function.

ResPCT: Fast Checkpointing in Non-volatile Memory for Multi-threaded Applications EuroSys ’22, April 5–8, 2022, RENNES, France

4 8 16 32 64
Number of threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

(a) update=10% search=90%

4 8 16 32 64
Number of threads

0

10

20

30

40

50

(b) update=50% search=50%

4 8 16 32 64
Number of threads

0

10

20

30

40

50

(c) update=90% search=10%
Transient<DRAM>
PMThreads
Clobber
Quadra/Trinity
SOFT
Montage
ResPCT
Dali

Figure 8. Performance with the HashMap

4 8 16 32 64
Number of threads

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

op
s/

se
c) Transient<DRAM>

PMThreads
Clobber
Quadra/Trinity
FriedmanQueue
Montage
ResPCT

Figure 9. Performance with the Queue

persistent lock-free queue [17] (FriedmanQueue), a persis-
tent lock-free hash table [51] (SOFT), and a persistent hash
table based on checkpointing [36] (Dali). To have a basis for
comparison, we also evaluate the unmodified transient code
on DRAM (labeled Transient<DRAM>).

For PMThreads, we modified the source code provided by
the authors6 to parallelize the checkpointing procedure. We
identified that the single flusher thread was the bottleneck
of the system. For Quadra/Trinity7 and Clobber-NVM8, we
use the source code provided by the authors. All other al-
gorithms are the implementations provided by the authors
of Montage9. For Quadra/Trinity, we use the most efficient
algorithm for each data structure: Quadra for the Queue and
Trinity for the HashMap. In their paper, the authors pro-
pose a solution based on flat combining [21] to obtain a very
efficient implementation of critical sections. To have a fair
comparison, we evaluate Quadra with a pthread lock for the
Queue instead.
Figure 8 presents the results for the HashMap with 106

buckets and 2×106 keys. We evaluate 3 workloads with the
following update/search ratios: 1:9, 1:1 and 9:1. Half of the
updates are inserts and half are deletes. Figure 9 presents the
performance of the Queue with an enqueue/dequeue ratio
of 1:1. Both data structures are pre-filled before starting the
evaluation, with 1k element for the Queue and 1M key-value
pairs for the HashMap. Both figures show the performance
(in Mops per second) as a function of the number of threads.

6https://doi.org/10.5281/zenodo.3756416
7https://doi.org/10.5281/zenodo.4362578
8https://doi.org/10.5281/zenodo.4322233
9https://github.com/urcs-sync/Montage

When comparing the performance of ResPCT with the
transient algorithms executed on DRAM, we observe at most
9% overhead with the HashMap. With 64 threads, it is 4%
with 90% of search operations. For the Queue, the highest
overhead with ResPCT reaches 37%. However, as we show
in Section 5.2, half of this overhead is also observed when
executing the transient program on NVMM.

The results presented in Figure 8 show that, at large core
count, ResPCT significantly outperforms all existing buffered
durably linearizable solutions (with at least a 3.1× speedup
for the write-intensive workload) and all durably linearizable
solutions (with at least a 2.7× speedup for the write-intensive
workload). Only the dedicated lock-free SOFT algorithm
manages to outperform our solution for the read-intensive
workload. But in this case, this algorithm is even faster than
the transient lock-based algorithm.
The tests with the Queue (Figure 9) show that ResPCT

outperforms all systems except PMThreads. PMThreads is
very efficient in this case because it is based on a shadowing
approach that creates a copy of the data in DRAM. However,
the main performance overhead of PMThreads comes from
tracking modifications when the persistent state is large, as
its performance with the HashMap illustrates.
The performance of Montage, the other system based on

checkpoints, is rather good. However, it is significantly lower
than ResPCT for two main reasons. First, Montage puts more
stress on the memory allocator as each update requires allo-
cating a new element. This is illustrated by its limited perfor-
mance for the write-intensive workload with the HashMap.
Second, Montage requires managing additional metadata for
some algorithms. For the Queue, the management of a global
sequence number updated inside the critical section affects
its performance.

Finally, Quadra/Trinity, which guarantees durable lineari-
zability, has performance that is close to PMThreads and
Montage. This illustrates the advantage of InCLL over other
logging techniques. ResPCT, achieves even higher perfor-
mance by targeting buffered durable linearizability.

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

5.2 Detailed analysis of ResPCT
Overhead analysis. To analyze the overhead of ResPCT in
details, we evaluated three additional configurations: (i) The
transient program on NVMM, (ii) ResPCT with InCLL, mo-
dification tracking, but no checkpoint (ResPCT-InCLL), and
(iii) ResPCT with the complete algorithm except flushing
the modified data on NVMM (ResPCT-noFlush). Figure 10
presents the results with the Queue and two workloads for
the HashMap: read intensive (10% update, 90% search) and
write intensive (90% update, 10% search). We use 64 threads
for this evaluation. The figure shows the throughput norma-
lized to Transient<DRAM>.

We can observe that the higher overhead with the Queue
mostly comes from running on NVMM. All other costs
are small. Comparing Transient<NVMM> to ResPCT-InCLL
shows that InCLL enables ResPCT to implement a very effi-
cient undo log and modification tracking solution.
The comparison between Transient<NVMM> and

ResPCT-InCLL performance shows that InCLL has a negligi-
ble impact on performance. Both the original Queue and
Hashmap programs use up the entire space in cache lines.
Thus implementing InCLL increases the memory footprint.
However, it has no significant impact on performance.
The comparison between ResPCT and ResPCT-noFlush

with the Hashmap illustrates that, a checkpoint takes little
time compared to the epoch duration even when the amount
of data to flush is large. For the write-intensive workload,
700k addresses are flushed on average during each check-
point, which is around 6× more than with the read intensive
workload. This is because cache lines are flushed in parallel
during checkpoints.
This detailed analysis further explains the results of Fi-

gure 8, where the performance of ResPCT for the read and
write-intensive workloads do not differ much, contrary to
what is observed with other systems. The overhead of Res-
PCT is 4% for the read-intensive workload and 8% for the
write-intensive workload. In comparison, other techniques
suffer more with the write-intensive workload due to in-
creased number of flushes (durable linearizability), costly
modification tracking (PMThreads), or costly updates (re-
quiring memory allocation in Montage).

Queue Hashmap(read int.) Hashmap(write int.)
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Transient<DRAM>
Transient<NVMM>
ResPCT_InCLL
ResPCT-noFlush
ResPCT

Figure 10. Detailed analysis of ResPCT overhead

Impact of the checkpoint period. Figure 11 illustrates the
impact of the checkpoint period duration on performance,
for the HashMap with the write-intensive workload and
64 threads. The checkpoint period varies between 1ms and
64ms. Since the results are qualitatively the same with the
read-intensive workload and with the Queue, we chose not
to include them to avoid clutter.
The results show that we can execute checkpoints every

16 ms, with almost no performance overhead. With 4-ms
epochs, ResPCT is still better than any other systems we
have evaluated (considering 64-ms epochs for periodic ap-
proaches), except SOFT. Since ResPCT delays checkpoints
until all threads reach an RP, one couldwonder if the effective
period duration is longer than the expected one. However,
with 4-ms epochs, we measured an effective period duration
of 5 ms, which we think is an acceptable delay.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Epoch duration (in ms)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

HashMap (write int.)

Figure 11. ResPCT with different checkpoint periods

Recovery time. Figure 12 shows the performance of the re-
covery procedure for the HashMap with the write-intensive
workload. We measured the time needed to reconstruct a
consistent global state after a crash. Results are presented as
a function of the number of buckets in the HashMap. There
are at most 2 elements per bucket. For this test, we execute
the workload for a few seconds before simulating a crash.

Since the HashMap is a highly concurrent data structure,
we are able to parallelize its recovery procedure. 32 threads
are used during the recovery procedure. With a 4M-buckets
HashMap, recovery takes less than 240 ms.

0 1M 2M 3M 4M
Number of HashMap buckets

0

50

100

150

200

Ex
ec

ut
io

n
tim

e
in

 m
s

Figure 12. Recovery performance for the HashMap

5.3 Real-world workloads
This section presents the evaluation of ResPCT using real-
world workloads. We consider compute-intensive programs
coming from two benchmark suites, as well as the popular
in-memory key-value store Memcached [34].

ResPCT: Fast Checkpointing in Non-volatile Memory for Multi-threaded Applications EuroSys ’22, April 5–8, 2022, RENNES, France

Compute-intensive workloads. To illustrate that ResPCT
can also efficiently provide fault-tolerance for compute-
oriented workloads, we evaluate it with four applications
coming from the Parsec [4] and the Phoenix [41] benchmark
suites. From Parsec, we select Dedup which implements a
data processing pipeline that relies on condition variables
to synchronize the stages of the pipeline. We also select
Swaptions, a lockless application that uses the data-parallel
parallelization model. Phoenix provides a set of benchmarks
implemented using the MapReduce programming model. We
test two of the benchmarks: Matrix Multiplication (MatMul)
and Linear Regression (LR). For each benchmark, we chose
a problem size that is big enough so that they run at least
several seconds. We selected these benchmarks to be repre-
sentative of different workloads: heavily lock-based (Dedup),
lock-less (Swaptions), compute intensive (MatMul) and ma-
chine learning oriented (LR).

Figure 13 illustrates the performance of these applications,
with the execution time normalized to Transient<DRAM>.
All experiments were run using 64 program threads since this
configuration offers the best performance for the transient
versions. These results show that the overhead of ResPCT is
between 17% and 21% for these real-world applications.

Positioning RPs. These experiments allow us to discuss
about the positioning of RPs and its impact on performance.

For correctness, RPs can be placed anywhere in the code,
except inside critical sections. In our experience, positioning
RPs was straightforward as we chose to put an RP call after
each logical block of code, for instance, after computing the
value of each cell in the matrix multiplication, or after inser-
ting an element in the hash table. However, positioning RPs
naively might affect performance by: (i) uselessly increasing
the persistent state size, or (ii) making some threads waiting
for others at the checkpoint.
Swaptions and LR are examples where, with the initial

positioning of RPs, we observed a slowdown of 4× and 9×
respectively. We take the case of LR to illustrate.10 We first
placed RPs after processing each input data point, which lead
to the 9× slowdown. However, identifying the problem was
easy. Calling update_InCLL() for the modifications related
to the processing of each point was too costly.
We modified the positioning of RPs to place them after

processing a batch of 1000 points. This was enough to make
the overhead drop to around 20%. Such performance im-
provement was only possible thanks to the flexibility of the
manual insertion of RPs. Unlike other systems, where the
persistent state is defined by critical sections [47, 48] or
transactions [40], ResPCT allows programmers to adjust the
persistent state without changing the application logic.

We evaluated the impact of the positioning of RPs on the
effective epoch duration. For LR, for a 64-ms and a 4-ms pe-
riod, the measured duration was 65 ms and 5 ms respectively,
10The problem and the solution were very similar with Swaptions.

Dedup Swaption linear Regresion Matrix Multiplication
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

Transient<DRAM>
ResPCT

Figure 13. Performance with compute-intensive applica-
tions

"1:9" "1:1" "9:1"
update:search ratio

0.0

0.5

1.0

1.5

2.0

2.5

Th
ou

sa
nd

s o
f o

ps
/s

ec

Transient<DRAM>
Transient<NVMM>
ResPCT

Figure 14. Performance of Memcached with 106 keys with
value size of 100 bytes

indicating that checkpoints are not delayed. We explain this
by the fact that each thread still makes RP calls frequently
enough to avoid delaying checkpoints. Moreover, positio-
ning RPs at the end of logical blocks makes all threads reach
RPs almost at the same time in most cases.

Memcached. Memcached [34] is a popular in-memory key-
value store which is used as an object cache by web appli-
cations. Similarly to existing evaluations [35], we modified
Memcached to store the hash table of key-value objects in
NVMM.We evaluate the asynchronous writes version, which
immediately returns the response to the client without wai-
ting for the object to become durable. It corresponds to the
default consistency of RocksDB [16].
We generate workloads with the YCSB [12] benchmark,

using 32 clients and 4 worker threads for the Memcached
server. We warm-up the hash table by inserting 1M key-
value pairs (i.e., YCSB load phase) and then perform 1 million
put/get operations based on the workload characteristics. We
consider read-intensive (90% reads and 10% writes), write-
intensive (10% reads and 90% writes) and balanced (50% reads
and 50% writes) workloads.
Figure 14 shows the throughput in thousands of oper-

ations per second. The overhead of ResPCT is 5% for the
read-dominant workload which is the most common pat-
tern for this kind of systems. Even for the write-dominant
workload, the performance overhead is only 18.5%. We also
measured the latency. The overhead was at most 10% with
write-intensive workload. Comparing Transient<DRAM>
with Transient<NVMM> shows that most of this overhead
simply comes from executing on NVMM.

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

Added or modi-
fied LoC

Original
LoC

Modifications
in %

Hashmap 19 282 6.74%
Queue 31 607 5.11%
Dedup 244 3351 7.28%
Swaptions 29 1137 2.55%
MatMul 13 196 6.63%
LR 69 138 50.00%
Memcached 97 20520 0.47%
Table 3. Number of lines modified in the applications

5.4 Modifying the original code to apply ResPCT
In this section, we describe the amount of effort that was
required to modify existing applications to integrate ResPCT.
It did not took us more than a few hours to modify each

program.Mostmodifications were to insert update_InCLL()
and add_modified() calls to implement logging. This re-
quires identifying the variables that belong to the persistent
state. Based on our experience, it is straightforward when
RPs are positioned after logical blocks of code.
Table 3 illustrates the number of lines of code (LoC) that

we had to add or modify in the source code of applications.
The modifications represent between 2.5 and 7.2% of the
LoC. LR and Memcached are not representative for different
reasons. A large part of the code of Memcached is dedicated
to handle client-server communication. Since we did not mo-
dify this part of the code, modifications only represent 0.47%
of the LoC. In the case of LR, the percentage of modifications
is very high because we had to duplicate part of the code to
position RPs as described in Section 5.3.

6 Discussion
The section discusses some possible limitations of ResPCT.

ResPCT impacts the data layout of programs as InCLL
implies that the log for a variable is located in the same
cache line as the variable itself. For instance, in the case
of the Queue program, because of InCLL the elements of
the queue are not stored at contiguous addresses as in the
original program. Hence, accessing elements using pointer
arithmetic requires using the corresponding InCLL_data<T>
type. This is extra work for the programmer but considering
the achieved performance, we think that it is acceptable.

Our experience shows that modifying programs manually
to apply ResPCT is rather simple. Still, it would be good to be
able to apply those changes automatically. While automat-
ing some of them (e.g. handling cond_wait()) could be easy,
dealing with all the corner cases for detecting persistent vari-
ables and required logging can be difficult, especially when
variables are accessed through pointers. As far as we know,
even the existing transparent solutions [47] rely on the pro-
grammer to correctly manage persistent variables accessed

outside of critical sections or transactions. Addressing this
problem is an interesting direction for future work.
One could wonder whether a solutions like ResPCT is

still needed when some techniques, such as the Enhanced-
Asynchronous DRAMRefresh (eADR) feature from Intel [24],
are proposed to include the caches in the persistent domain.
However, it will take time before all servers are equipped
with such technologies. Furthermore, since such approaches
rely on batteries [1, 7], it raises questions regarding their
energy efficiency and their reliability at scale, thatmight limit
their acceptance. Hence, proposing efficient fault-tolerant
solutions that can handle volatile caches is still valuable.

7 Conclusion
ResPCT is a general solution to provide fault-tolerance for
multi-threaded applications running on top of NVMM using
periodic checkpoints. ResPCT is based on In-Cache-Line Log-
ging, which is used both to implement an undo log and a
modification tracking solution. With this approach, tracking
modifications requires executing only a few extra instruc-
tions when a store to a persistent variable is issued, and
undo logging is implemented without explicitly synchroniz-
ing with NVMM. Furthermore, thanks to an API that allows
programmers to explicitly position restart points in their pro-
gram, ResPCT helps reducing the state that should be stored
in NVMM, and so, improves performance. Evaluations show
that ResPCT can significantly outperform all state-of-the-art
solutions for the implementation of ubiquitous concurrent
data structures. ResPCT has a low overhead for very diverse
workloads, ranging from an in-memory KV store to MapRe-
duce jobs. Because of its low overhead, ResPCT achieves
high performance even with a checkpointing period as low
as a few milliseconds.

Acknowledgments
We would like to thank our shepherd, Marc Shapiro, and the
anonymous reviewers for their valuable feedback. Experi-
ments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and sev-
eral Universities as well as other organizations (see https:
//www.grid5000.fr).

References
[1] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James

Tuck, and Yan Solihin. 2021. BBB: Simplifying Persistent Programming
using Battery-Backed Buffers. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA) (Seoul, South Korea).
111–124.

[2] Mohammad Alshboul, James Tuck, and Yan Solihin. 2018. Lazy per-
sistency: A high-performing and write-efficient software persistency
technique. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA) (Los Angeles, USA). 439–451.

[3] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck
Cappello, Naoya Maruyama, and Satoshi Matsuoka. 2011. FTI: High

https://www.grid5000.fr
https://www.grid5000.fr

ResPCT: Fast Checkpointing in Non-volatile Memory for Multi-threaded Applications EuroSys ’22, April 5–8, 2022, RENNES, France

performance fault tolerance interface for hybrid systems. In Proceed-
ings of 2011 international conference for high performance computing,
networking, storage and analysis (SC) (Seatle, USA). 1–32.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: Characterization and architectural im-
plications. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques (PACT) (Toronto, Canada).
72–81.

[5] Hans-J Boehm and Sarita V Adve. 2008. Foundations of the C++
concurrency memory model. ACM SIGPLAN Notices 43, 6 (2008), 68–
78.

[6] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging locks for non-volatile memory consistency. ACM
SIGPLAN Notices 49, 10 (2014), 433–452.

[7] Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang.
2021. Revamping hardware persistency models: view-based and ax-
iomatic persistency models for Intel-x86 and Armv8. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI). 16–31.

[8] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-
jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
making persistent objects fast and safe with next-generation, non-
volatile memories. ACM SIGARCH Computer Architecture News 39, 1
(2011), 105–118.

[9] Nachshon Cohen, David T Aksun, Hillel Avni, and James R Larus.
2019. Fine-Grain Checkpointing with In-Cache-Line Logging. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
(Providence, USA). 441–454.

[10] Nachshon Cohen, Michal Friedman, and James R Larus. 2017. Efficient
logging in non-volatile memory by exploiting coherency protocols.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017),
1–24.

[11] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. 2018. The
inherent cost of remembering consistently. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures (SPAA)
(Vienna, Austria). 259–269.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing
(SoCC) (Indianapolis, USA). 143–154.

[13] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romu-
lus: Efficient algorithms for persistent transactional memory. In Pro-
ceedings of the 30th on Symposium on Parallelism in Algorithms and
Architectures (SPAA) (Vienna, Austria). 271–282.

[14] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2020. Persis-
tent memory and the rise of universal constructions. In Proceedings
of the Fifteenth European Conference on Computer Systems (EuroSys)
(Heraklion, Crete, Greece). 1–15.

[15] Marc A De Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. 2012.
Static analysis and compiler design for idempotent processing. In
Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI) (Beijing, China). 475–486.

[16] Facebook. 2017. RocksDB. http://rocksdb.org/.
[17] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-

trank. 2018. A persistent lock-free queue for non-volatile memory.
ACM SIGPLAN Notices 53, 1 (2018), 28–40.

[18] Ellis R Giles, Kshitij Doshi, and Peter Varman. 2015. SoftWrAP: A
lightweight framework for transactional support of storage class me-
mory. In 2015 31st Symposium onMass Storage Systems and Technologies
(MSST) (Santa Clara, USA). 1–14.

[19] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M Chen, and Thomas F Wenisch. 2018. Per-
sistency for synchronization-free regions. ACM SIGPLAN Notices 53, 4
(2018), 46–61.

[20] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang,
Haibing Guan, and Haibo Chen. 2019. Pisces: a scalable and efficient
persistent transactional memory. In 2019 USENIX Annual Technical
Conference (USENIXATC 19) (Renton, USA). 913–928.

[21] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
combining and the synchronization-parallelism tradeoff. In Proceed-
ings of the 22nd ACM symposium on Parallelism in algorithms and
architectures (SPAA) (Thira, Santorini, Greece). 355–364.

[22] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a
correctness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463–492.

[23] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. 2017. NVthreads: Practical persistence for
multi-threaded applications. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys) (Belgrade, Serbia). 468–482.

[24] Intel. 2021. eADR: New Opportunities for Persistent Memory
Applications. https://www.intel.com/content/www/us/en/developer/
articles/technical/eadr-new-opportunities-for-persistent-memory-
applications.html.

[25] Intel. 2021. Intel Optane DC Persistent Memory. https:
//www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html.

[26] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016.
Brief announcement: Preserving happens-before in persistent memory.
In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA) (Pacific Grove, USA). 157–159.

[27] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016.
Linearizability of persistent memory objects under a full-system-crash
failure model. In International Symposium on Distributed Computing
(DISC) (Paris, France). 313–327.

[28] Nikolaos D. Kallimanis. 2021. Synch: A framework for concurrent
data-structures and benchmarks. Journal of Open Source Software 6,
64 (2021), 3143.

[29] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei
Wu, Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building durable
transactions with decoupling for persistent memory. ACM SIGPLAN
Notices 52, 4 (2017), 329–343.

[30] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H
Noh, and Changhee Jung. 2018. iDO: Compiler-directed failure atomic-
ity for nonvolatile memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (Fukuoka, Japan). 258–270.

[31] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt,
Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd.
2015. Existential consistency: measuring and understanding consis-
tency at facebook. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP) (Monterey, USA). 295–310.

[32] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi
Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.
2017. Atomic in-place updates for non-volatile main memories with
kamino-tx. In Proceedings of the Twelfth European Conference on Com-
puter Systems (EuroSys) (Belgrade, Serbia). 499–512.

[33] AmirsamanMemaripour, Joseph Izraelevitz, and Steven Swanson. 2020.
Pronto: Easy and Fast Persistence for Volatile Data Structures. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
(Lausanne, Switzerland). 789–806.

[34] Memcached. 2018. memcached – a distributed memory object caching
system. http://memcached.org/.

[35] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris
Volos, and Kimberly Keeton. 2017. An analysis of persistent memory
use with WHISPER. ACM SIGPLAN Notices 52, 4 (2017), 135–148.

[36] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B Morrey III,
Dhruva R Chakrabarti, and Michael L Scott. 2017. Dalí: A periodically
persistent hash map. In 31st International Symposium on Distributed

http://rocksdb.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://memcached.org/

EuroSys ’22, April 5–8, 2022, RENNES, France Ana Khorguani, Thomas Ropars, and Noel De Palma

Computing (DISC) (Vienna, Austria).
[37] pmem.io. 2022. Persistent Memory Development Kit. https://pmem.

io/pmdk/.
[38] The NDCTL project. 2022. NDCTL User Guide. https://docs.pmem.io/

ndctl-user-guide/.
[39] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019.

Persistency semantics of the Intel-x86 architecture. Proceedings of the
ACM on Programming Languages 4, POPL (2019), 1–31.

[40] Pedro Ramalhete, Andreia Correia, and Pascal Felber. 2021. Efficient
algorithms for persistent transactional memory. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). 1–15.

[41] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. 2007. Evaluating mapreduce for multi-core
andmultiprocessor systems. In 2007 IEEE 13th International Symposium
on High Performance Computer Architecture (HPCA) (Phoenix, USA).
13–24.

[42] Andy Rudoff. 2017. Persistent memory programming. Login: The
Usenix Magazine 42, 2 (2017), 34–40.

[43] Yuval Tamir and Carlo H Sequin. 1984. Error recovery in multicomput-
ers using global checkpoints. In In International Conference on Parallel
Processing (ICPP) (Lausanne, Switzerland). 32–41.

[44] Haris Volos, Andres Jaan Tack, andMichaelM Swift. 2011. Mnemosyne:
Lightweight persistent memory. ACM SIGARCH Computer Architecture
News 39, 1 (2011), 91–104.

[45] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin
Valpey, and Michael L Scott. 2021. A Fast, General System for Buffered

Persistent Data Structures. In International Conference on Parallel Pro-
cessing (ICPP) (Chicago, USA). 1–11.

[46] Kai Wu, Ivy Peng, Jie Ren, and Dong Li. 2020. Ribbon: High perfor-
mance cache line flushing for persistent memory. In Proceedings of the
ACM International Conference on Parallel Architectures and Compilation
Techniques (PACT) (Atlanta, USA). 427–439.

[47] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Luján.
2020. PMThreads: persistent memory threads harnessing versioned
shadow copies. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (London,
UK). 623–637.

[48] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM:
log less, re-execute more. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 346–359.

[49] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An empirical guide to the behavior and use of
scalable persistent memory. In 18th USENIX Conference on File and
Storage Technologies (FAST) (Santa Clara, USA). 169–182.

[50] Pantea Zardoshti, Michael Spear, Aida Vosoughi, and Garret Swart.
2020. Understanding and Improving Persistent Transactions on Op-
tane™ DC Memory. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (New Orleans, USA). 348–357.

[51] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez
Petrank. 2019. Efficient lock-free durable sets. Proceedings of the ACM
on Programming Languages 3, OOPSLA (2019), 1–26.

https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://docs.pmem.io/ndctl-user-guide/
https://docs.pmem.io/ndctl-user-guide/

	Abstract
	1 Introduction
	2 Background
	2.1 System model and assumptions
	2.2 Related work

	3 Algorithm
	3.1 Design overview
	3.2 Ensuring consistency
	3.3 Restart Points and persistent state

	4 Proof
	4.1 Liveness
	4.2 Buffered durable linearizability

	5 Evaluation
	5.1 Micro Benchmarks
	5.2 Detailed analysis of ResPCT
	5.3 Real-world workloads
	5.4 Modifying the original code to apply ResPCT

	6 Discussion
	7 Conclusion
	References

