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Abstract—The greenhouse gas emissions of data centers and
the question of how to reduce them are a broad problem that has
come into focus with the ongoing climate crisis. Yet, the emissions
of storage infrastructures specifically are not well understood.
Recent work shows that the manufacturing emissions of SSDs
are significantly higher than those of HDDs. Also, the energy
consumption of high-end SSDs is in general higher than the one
of HDDs. This raises the question of whether the performance
improvements provided by SSDs over HDDs are enough to also
provide an advantage in terms of carbon footprint. In this paper,
we analyze the lifecycle carbon footprint of SSDs and HDDs when
used as storage devices for Key-Value stores. Considering state-
of-the-art Key-Value stores specifically designed to make best use
of HDDs or SSDs, we use specialized hardware to measure the
power consumption of NVMe SSDs, as well as of the processor
and memory to analyze the impact of different Key-Value stores
and workloads on power. We conduct an analysis to determine if
SSD-based systems outperform HDD-based systems with respect
to their carbon footprint. Our results show that in most cases, the
high operational energy efficiency of SSDs allow systems based
on SSDs to have lower carbon footprint. However, HDD-based
solutions should be considered in cases where the full potential
of SSDs cannot be exploited and when the carbon intensity of
the electricity powering the data center is low.

I. INTRODUCTION

With the ongoing climate crisis, lowering the carbon emis-
sions of data centers becomes a major concern. As of today, it
is estimated that information communication technology (ICT)
accounts for 1.8% to 2.8% of the Greenhouse Gas (GHG)
emissions worldwide [1], with data centers being responsible
for a significant fraction of it. The carbon emissions of data
centers include embodied emissions and operational emissions.
Efforts have already been made to improve the operational
emissions [2], [3]. Different solutions, such as optimizing the
Power Usage Efficiency (PUE) [2] and relying on renewable
energy, have lead to a situation where operational emissions
can represent less than 50% of the carbon emissions of data
centers [4], and even much less in some cases [5]. Hence, it is
of major importance to study solutions to reduce the embodied
carbon footprint of data centers [6].

Analyses of the embodied carbon emissions of data centers
identify storage devices as one major contributor [6], [7].
This is especially true when considering servers equipped
with Solid-State Drives (SSDs): In Azure data centers, SSDs
account for 30% of the embodied emissions in compute racks
and 80% in storage racks [7], making up more than 60% of
the embodied emissions of the data center.

Comparisons between the embodied emissions of SSDs and
Hard-Disk Drives (HDDs) show that SDDs are much more
carbon intensive to manufacture [7], [8]. Therefore, one could
wonder if a straightforward solution to reduce the embodied
carbon footprint of data centers could be to use more HDDs
and fewer SSDs. Yet, SSDs offer orders of magnitude better
performance than HDDs [9]. It is then unclear whether using
HDDs actually reduces the global carbon emissions or if
the gains with respect to the embodied emissions would be
cancelled out by the increase in operational emissions.

The goal of this work is to assess whether using SSDs for
storage in data centers is always the best solution to reduce the
carbon emissions, or if there are cases where using HDDs can
be more beneficial. Answering this question in the general
case is difficult as many kinds of storage abstractions and
databases are used in data centers [10], generating different
access patterns to the underlying storage devices. Hence, for
this study, we focus on a specific kind of databases commonly
used in many cloud applications [11], [12], that is, Key-Value
stores (KV stores). KV stores optimized to run on HDDs exist
since several years [11], [13], [14]. KV stores designed to
make the best use of the capabilities of modern NVMe SSDs
have recently been proposed [15], [16], allowing us to run a
fair comparison between the two types of systems.

Our analysis requires data about the embodied and the
operational carbon footprint of KV stores running on the two
types of devices. To estimate the embodied carbon footprint
of storage devices, we rely on existing publications [8]. On
the other hand, we measure the power consumption to deduce
the operational carbon footprint. More specifically, we run
tests with different types of workloads [17] with two state-of-
the-art KV stores [11], [15], using specialized wattmeters to
precisely measure the energy consumption of storage devices.
We also use Intel RAPL counters [18] to capture the energy
consumption of the processors and the memory in the storage
server running the KV stores.

In addition to the lower embodied carbon footprint of HDDs
and the higher performance of SSDs, multiple factors can
impact the relative benefits of using SSDs for KV stores in data
centers with respect to carbon emissions. The most obvious
one is the carbon intensity of the electricity used to power
the servers, which determines the operational emissions [4].
Another factor is the power consumption of SSDs. Contrary
to HDDs that have nearly constant power consumption, the



power consumption of SSDs varies significantly depending on
the access patterns and can be much higher than the one of
HDDs, as was observed in previous studies [19]. Our study
includes precise measurements of the energy consumption of
modern NVMe SSDs to document this point. A last important
factor is the algorithms that are used to implement KV stores
depending on the storage device. Whereas KV stores running
on top of HDDs need to rely on complex algorithms such as
LSM-trees [14], [20] to achieve high performance, KV stores
targeting SSDs use much simpler algorithms. This implies
different loads on the CPU and the memory. The CPU being
the most power-consuming component in a server, this has a
significant impact on the operational emissions. At the end,
our problem boils down to the following question: taking all
these factors into account, are the operational carbon emissions
of servers based on SSDs low enough to compensate for their
higher embodied emissions in a time that is lower than the
lifetime of the devices.

We present an extensive study based on the data we col-
lected through experiments. Our study includes two different
NVMe SSD models to avoid drawing conclusions based on a
single device that might not be representative. Our results show
that in most cases, with KV stores, the high operational energy
efficiency of SSDs leads to systems based on SSDs having a
lower carbon footprint despite their higher embodied carbon
emissions. The performance difference between NVMe SSDs
and HDDs is so high that, in many cases, multiple HDDs
would have to be used to reach the same performance as a
single SSD device can provide, leading to a higher embodied
footprint for the HDD-based system. Still, using HDDs can be
beneficial when SSDs are not used at their full potential. Also,
in data centers powered with less carbon-intensive electricity,
the advantages of SSDs become less salient. Hence, the choice
between SSDs and HDDs as storage device should still be
made with care.

To summarize, the main contributions of this paper are:
• An extensive campaign of experiments to measure the

energy consumption of SSD-based and HDD-based KV
stores, and a break-down of this energy consumption per
hardware component.

• A thorough analysis to determine the conditions under
which SSD-based solutions allow reducing the carbon
footprint of storage in data centers compared to HDD-
based solutions, considering the case of KV stores.

The rest of the paper is organized as follows. Section II
presents the background on the carbon footprint on storage de-
vices and introduces KV stores. It also presents an evaluation
of the energy efficiency of NVMe SSDs. Section III shows the
result of our experiments measuring the energy efficiency of
KV stores running on HDDs and SSDs. Finally, we analyze the
lifecycle carbon footprint of HDD and SSD-based KV stores
in Section IV.

II. BACKGROUND

Several studies [1], [21] have documented the ICT contri-
bution to global warming through GHG emissions, as well as

its continuous growth. Datacenters play a significant role in
these trends. In this paper, we use the term carbon emission
(or carbon footprint) to refer to GHG emissions, as the global
warming potential of activities is commonly translated into
CO2-equivalent (CO2e) emissions [22].

Following the GHG protocol [23], the carbon emissions
of a datacenter can be divided into 3 scopes [5]: the direct
emissions (scope 1), the indirect emissions from purchased
energy (scope 2, i.e., the operational carbon footprint), the
indirect emissions from manufacturing and transporting prod-
ucts (scope 3, i.e., the embodied carbon footprint). In the
case of datacenters, the focus is on operational and embodied
emissions, as scope 1 emissions are negligible [5], [7].

In the past years, significant work has been put by cloud
providers into reducing their operational emissions. It includes
optimizing the PUE of datacenters [2], [24] as well as the
energy usage of computing resources [25], [26], and taking
advantage of renewable energy [5], [27], [28]. These improve-
ments lead to a situation where embodied emissions are as
important, or even more important, than operational emissions
in hyperscale datacenters [4], [5]. Analyses of this embodied
carbon footprint show that storage devices are a significant
contributor, especially SSDs [7].

SSDs are a popular solution because of their much bet-
ter performance than HDDs. However, SSDs have a higher
embodied footprint per byte and consume more power per
byte [7]. Hence, we can wonder which type of devices should
be used to minimize the carbon footprint of datacenters.

In this section, we start by presenting data about the carbon
footprint of storage devices. For our study, we need a good
understanding of the energy consumption of SSDs. Hence,
we present fine-grained measurements we collected on two
different NVMe SSDs. Finally, since our study focuses on KV
stores as an example of storage system used in datacenters, we
finish by providing the necessary background about this kind
of database.

A. The carbon footprint of storage devices

The motivation for this work is the observation that the
embodied carbon footprint of SSDs is much higher per byte
than the one of HDDs [8], [29]. When studying the embodied
carbon emissions per byte (named Storage Embodied Factor
– SEF), it can be observed that SSDs have a 2x to 10x higher
SEF than HDDs. The most extreme numbers presented in [8]
even show a 68x difference between the best HDD and the
worst SSD. These numbers are, of course, to be taken with
care as they mostly come from industry reports [29] and Life
Cycle Analysis reports from computer vendors that are not
focused only on storage devices [8].

Regarding the operational footprint of storage devices, the
work by Harris and Altiparmak [19] that compares the energy
efficiency of servers equipped with different kinds of storage
devices (an HDD, an NVMe SSD, and an Intel Optane device),
provides us with some useful information. First, the power
consumption of HDDs is more or less constant no matter
the workload. Second, the energy consumption of modern



SSDs varies significantly depending on the workload, and
can be much higher than the one of HDDs. However, during
their experiments the authors were only able to collect power
consumption measurements at the level of the power supply
of the server. Other studies also analyze power consumption
of SSDs [30], [31]. However, these publications are rather old
and are not representative of current SSDs. In Section II-B,
we present a detailed evaluation to characterize the power
consumption of NVMe SSDs according to the workload.

B. Energy consumption of SSDs

To precisely measure the power consumption of SSDs, we
use a Quarch Power Analysis Module (PAM)1. The device
is plugged on the same PCIe port as the SSD and measures
the current flowing through the connection. It samples at a
very high frequency of 250KHz, which we aggregate to values
every 1ms using a function provided by the API of the device.

For our measurements, we consider two NVMe devices:
a 1.6 TB SSD Dell Express Flash NVMe PM1725 AIC
(called NVMe1 hereafter) and a 1.6 TB SSD NVME Dell
Samsung PM1735 (NVMe2). The complete description of the
experimental testbed is presented is Section III-A. Note that
our study considers only NVMe SSDs as this interface is able
to take full advantage of the performance of modern SSDs,
contrary to other interfaces like SATA [9], [15].

Our goal is to precisely measure the power consumption of
the SSD devices and their energy efficiency (measured in MiB
per joule). We want to observe the impact of the workload
as well as the size of the written blocks on these metrics.
To this end, we use Fio, the Flexible I/O Tester2. For all
tests, we use libaio as I/O engine, which is the Linux
native asynchronous engine. We set I/O to be non-buffered
(O_DIRECT) to bypass the OS page cache, and we configure
Fio to refill the I/O buffers on every I/O submission to prevent
the NVMe from deduplicating data. Through empirical testing,
we set the number of querying threads to 4 with a queue depth
of 64, as these were the lowest numbers where we started
saturating the drives.

We test 6 I/O patterns: sequential reads (read), random
reads (randread), sequential writes (write), random write
(randwrite), and two mixes of random reads and writes
(mix5050, a 50/50 mix, and mix8020, a mix with 80% of
reads and 20% of writes). We execute these workloads for
blocksizes from 1kiB to 256kiB. Experiments run for 120
seconds. Each workload is executed three times and results
are averaged. Negligible variations were observed between the
runs for one workload.

Results show significant differences in power consumption
between the two devices: NVMe1 reaches a peak power
consumption of around 18 W, i.e. roughly three times its base
consumption (6.18 W), while NVMe2 peaks at about 14 W,
about two times its base consumption (7.17 W). It should be
noted that these values are much higher than those of typical

1https://quarch.com/products/power-analysis-module/
2https://fio.readthedocs.io

HDDs (The HDD we used consumes 6.02 W). The block size
and the I/O pattern impact the power consumption of the 2
SSDs similarly. For both devices, the power consumption for
smaller block sizes is lower, correlating with lower I/O rates.
Also, read workloads, which have a higher IO rate, consume
more power than writes for high block sizes (>16 KiB).

To better compare the two devices, we compute their energy
efficiency (in MiB/J) for each workload and each block size
by computing the ratio between I/O rate and power. Results
are presented in Figure 1a and Figure 1b for NVMe1 and
NVMe2 respectively. These results show that NVMe1 is more
energy efficient for small block sizes while NVMe2 becomes
more efficient for larger block sizes. For large block sizes,
NVMe2 is up to 40% more efficient for read-only workloads.
Conversely, the two devices also have some similarities: Both
are equally efficient on sequential and random workloads; Both
are ∼65% more energy efficient on read workloads than on
write workloads; Their energy efficiency for mixed workloads
cannot be directly inferred from their energy efficiency on
read-only and write-only workloads. To illustrate this last
point, if we consider a block size of 256 kB and NVMe1, the
energy efficiency for the 50/50 workload is 27% lower than the
weighted average of the efficiencies from random reads and
randoms writes whereas it is only 19% lower for the 80/20
ratio (and the results are significantly different for NVMe2).

These results show that the power consumption of SSDs can
be high and that their energy efficiency greatly depends on the
I/O pattern and the size of the written blocks. Furthermore,
the energy efficiency of mixed I/O patterns is difficult to
deduce from the energy efficiency of read-only and write-
only workloads. Thus, we think that assessing the operational
carbon footprint of SSDs in datacenters requires collecting
data on realistic workloads. In this study, we consider the
case of a type of storage engine commonly used in cloud
environments, persistent KV-stores.

C. Key-value stores

KV-stores are commonly used as storage engines in Cloud
applications [32] and serve a large diversity of workloads [11],
[33]. The most common data structure for KV-stores on
HDDs is the Log-Structured Merge (LSM) Tree [11], [14],
[20], which ensures most disk accesses are sequential. In this
work, we use RocksDB3 as an example of LSM-Tree-based
persistent KV-store. RocksDB is an open-source KV-Store
heavily used internally at Facebook [11].

Studies have shown that LSM-Tree-based solutions are not
suited for NVMe SSDs [15], [16]. The random-access perfor-
mance of such devices is so high that the complexity of LSM-
Tree algorithms is counter-productive: The CPU becomes
the performance bottleneck and prevents fully using the I/O
bandwidth. Hence, simpler designs optimized for NVMe SSDs
have been proposed [15], [16]. For our study, we consider
KVell [15]. KVell does not sort data before writing them to

3https://rocksdb.org/

https://quarch.com/products/power-analysis-module/
https://fio.readthedocs.io
https://rocksdb.org/
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Fig. 1: Energy efficiency of NVMe SSDs in MiB/J for different workloads and block size granularities

disk and uses a combination of multiple techniques (batching,
page cache, etc.) to reduce CPU overhead.

The solutions used to implement KV-stores on HDDs and
SSDs are rather different. Hence, when studying the impact
of the storage devices on the operational carbon footprint of
KV-stores, one should not only consider the energy consumed
by the storage devices, but also the impact on the other
components of the servers. We can foresee that the CPU
energy consumption per request will be lower with KVell
compared to RocksDB, thanks to its simpler design. In the next
section, we evaluate the energy efficiency of these two systems
under different workloads, measuring power consumption not
only at the level of the storage devices, but also taking into
account the power consumption of the CPU and the memory
of the storage servers.

III. ENERGY CONSUMPTION OF KV STORES

To analyze the impact of SSDs and HDDs on the carbon
footprint of datacenters, we need to evaluate the operational
footprint of storage engines with both types of devices. This
section evaluates the energy consumption of two KV stores,
RocksDB and KVell, using an HDD and an NVMe SSD as
storage device respectively, taking into account not only the
energy consumption of the storage devices but also the energy
consumption of the CPU and the memory of our storage server.
We start this section be describing our hardware setup and
methodology. Then, we present the results we obtained.

A. Methodology

1) Hardware setup: To run a fair comparison between
HDD-based and SSD-based KV stores, we run all experiments
with the same server. It is a Dell PowerEdge R940 server
equipped with 4 16-cores Intel Xeon Gold 6130 CPUs and
768 GiB (24 x 32 GiB Hynix DDR4) of memory. A second
server is used for load injection. The two servers communicate
through a 100 Gbps Omni-Path network, hence the network
is never a performance bottleneck in our experiments.

In addition to the two NVMe SSD devices described in
Section II-B, our storage server features a 2.0 TB SAS Seagate
ST2000NX0463 HDD. These three storage devices are used
to store the KV store data depending on the experiments. The
storage server includes one more SATA SSD (480 GB Intel
SSDSC2KG480G7R) that hosts the operating systems and is
used to store all collected measurements.

2) Measuring power consumption: To get a good under-
standing of the power consumption of KV stores, we measure
power consumption at different levels. As described in Sec-
tion II-B, we precisely measure the power consumption of
the NVMe SSDs using Quarch PAM modules. On the other
hand we do not have any special equipment to measure the
power consumption of our HDD. However, previous studies
have shown that the power consumption of HDDs is more or
less constant when it is active [19], as the main contributor to
power consumption is the rotation mechanic. Therefore, since
the HDD is always active during experiments where it is used,
we assume it to consume a constant power of 6.02W, the value
provided by the data sheet of the constructor.

To measure the power consumption of the processor and the
memory, we use Mojitos4 to read the content of the Running
Average Power Registers (RAPL) of Intel processors. These
registers log the power consumption of the processor and
the memory, with separate values for each package and each
memory NUMA node. Note that the storage server we use
to run the KV stores is way too powerful in terms of CPU
and memory compared to the actual needs of RocksDB and
KVell. Hence, to avoid over-estimating the CPU and memory
power consumption associated with running the KV stores,
we pin the KV-store process on a single NUMA node, to
ensure that it uses the cores of a single processor and the
corresponding memory. This way, the CPU/memory power
consumption of the database is given by the RAPL values
for the corresponding node. Moreover, we pin the monitoring

4https://gitlab.irit.fr/sepia-pub/mojitos



software (Mojitos and Quarch) on a different NUMA node
to ensure that the corresponding power consumption is not
included in the power consumption attributed to the database.

3) Software setup: All experiments are run with Debian 11
and Linux kernel version 5.10. The tested version of RocksDB
is 9.7.4 and the version of KVell is commit af10b7a.

To stress the KV stores with different workloads, we use
the YCSB benchmark [17]. However, to ensure that our power
measurements are not impacted by the CPU-intensive activity
of data generation in YCSB, we created our own client-
server version of YCSB in Rust, where the generation of
the benchmark data happens on a separate machine. This
client sends requests to the KV store executed on a different
machine where the power consumption is measured. Note that
data generation is CPU-intensive because we need to generate
random keys for each request, but also random values for write
requests, to prevent unrealistic compression by the KV stores.

We run tests with workloads A (50% read, 50% update),
B (95% read, 5% update), C (100% read) and E (95% scan
with max length 100, 5% insert) of YCSB. We execute the
workloads on databases with 100M entries and use 8-byte
keys and 1kB values. We choose keys for requests either
according to a uniform distribution or a zipfian distribution
with exponent 0.99. The zipfian distribution allows simulating
locality in the data accesses, as it has been observed in
several real workloads [11], [33]. We choose to not evaluate
benchmarks D and F. Workload D is a read-latest workload,
but we already have a scenario with non-uniform data access
through the zipfian distribution. Workload F reads and then
modifies records, but KVell does not support these queries.

Each workload is executed three times and results are
averaged. We issue 100M requests for workloads A, B and
C and 20M requests for workload E when testing the SSD
systems. For the HDD database, we issue 10M request for
workloads A,B and C as well as 2M requests for workload
E. This is to keep run times in check given the comparatively
low throughput of HDDs.

We test RocksDB on the HDD (called RocksHDD here-
after), but also on NVMe1 (called RocksNVMe) to see how a
more traditional database design behaves in terms of power
consumption when running on NVMe SSDs. Additionally
we test KVell on the two NVMe devices introduced in Sec-
tion II-B. Each database is allocated 30% of the dataset size as
memory (30GB). RocksDB is configured to use a 10GB LRU
cache, a bloom filter and a 64KB block size on HDD versus
a 16KB block size on SSD. Also, the compaction readahead
size for RocksHDD is set to 8MB. KVell is configured to use
a page cache of 25GB.

B. Results

This section discusses the results obtained through the
previous set of experiments. Table I presents a performance
summary of all systems across all workloads. As expected,
RocksHDD performs the worst, between 14 times (YCSB E,
KVell) and 1233 times (YCSB C, KVell) slower than the
other databases depending on the workload. In the rest of this

Dist. Database YCSB A YCSB B YCSB C YCSB E

Uniform RocksHDD 1.8k 403 377 172
RocksNVMe 63k 221k 243k 66k
KVell/NVMe1 149k 357k 461k 11.5k
KVell/NVMe2 260k 409k 465k 11.8k

Zipfian RocksHDD 2.2k 1.6k 1.6k 274
RocksNVMe 228k 750k 977k 155k
KVell/NVMe1 256k 750k 1083k 22.2k
KVell/NVMe2 466k 952k 1114k 23.0k

TABLE I: Throughput per second of each database for both uniform and zipfian request
patterns for all workloads

section, we discuss the average power consumption of each
system before factoring in the performance of the databases
by computing the energy needed to serve a request.

1) Power consumption: To begin the analysis, we compare
the average power consumption of the CPU, memory and
storage device for each system under each workload. Results
are presented in Figure 2.

The first major observation is that RocksHDD consumes
between 30W and 95W less power than the other systems
across all workloads. This is expected as the CPU is spending
most of its time waiting for disk I/O, but it raises the question
of how the power consumption evolves when all systems are
queried with a throughput that RocksHDD can handle. To
check this, we ran experiments on all systems with a constant
number of requests per second low enough that RocksHDD
could handle them (e.g. less than 377 on YCSB C). Results
from these additional experiments again show that RocksHDD
consumes less power than the SSD-based systems. Therefore,
to optimize the lifecycle carbon footprint, if an HDD-based
system can handle the load it should be preferred over an
SSD-based alternative, assuming a lower SEF for the HDD.

Knowing that KVell was developed to avoid the CPU over-
head that limits LSM-Tree-based KV stores such as RocksDB
on NVMe SSDs, it is interesting to see that KVell consumes
less power than RocksNVMe across all workloads and both
with respect to the CPU (up to 35%), the memory (up to
25%) and the storage (up to 33%). This shows that employing
a database adapted for modern NVMe SSDs is not only
beneficial in terms of performance, but also in terms of power.

2) Energy per request: As we have seen in the previous
section, because RocksHDD is I/O bottlenecked, its CPU
and memory power consumption are much lower than that
of RocksNVMe and KVell. Of course, its throughput is also
orders of magnitude lower. To represent this, we calculate the
energy required to serve a request by summing the total energy
consumption over the duration of the workload and divide it
by the throughput handled by each system. We present these
results as energy per request in mJ in Table II.

Unsurprisingly, the NVMe-based systems consume orders
of magnitude less energy per request than RocksHDD. For
example, for uniform requests, RocksHDD consumes up to
88 times more energy per request for YCSB A and 743 times
more for YCSB C. Indeed, workload C is the worst case for
an HDD-based system, as it consists of only random reads.
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Workload (Uniform) Workload (Zipfian)

Database A B C E A B C E

RocksHDD 34.3 141 156 251 20.7 38.7 39.5 154
RocksNVMe 1.62 0.61 0.60 2.29 0.49 0.17 0.16 1.62
KVell/NVMe1 0.65 0.28 0.21 9.96 0.38 0.13 0.09 5.04
KVell/NVMe2 0.39 0.24 0.21 9.75 0.22 0.11 0.09 4.92

TABLE II: Energy per request (as sum of package, memory and storage) in mJ for each
workload and database

Note that because of the mostly sequential accesses (and the
relatively poor performance of KVell), the difference in energy
is less pronounced for YCSB E.

For the zipfian access pattern, we observe the same trends,
although the gap between RocksHDD and the SSD databases
is a bit smaller. Indeed, because of the high access latency,
RocksHDD benefits more from most accesses being in
memory (around 90% under the tested configuration) than
the SSDs.

IV. COMPARING THE CARBON FOOTPRINT OF SSDS AND
HDDS

To compare the lifecycle carbon footprint of SSDs to that
of HDDs, we need to link the embedded and operational
emissions of both setups. When operating at high throughput,
SSDs are more energy efficient. However, due to their higher
embodied emissions, they need to produce lifetime operational
emissions low enough to ultimately have lower lifecycle
emissions than HDD-based systems. This introduces three
additional factors: the lifetime of the devices, the work handled
during that time, and the carbon intensity of the electricity
powering the devices.

A. Lifecycle carbon emissions of storage devices

In a first step, we compare the lifecycle carbon emissions of
KV stores running on the different storage devices, considering
solely the emissions and power related to the storage devices
themselves.

Equation 1 defines the condition for a KV store running on
NVMe SSDs to have a lower carbon footprint than a KV store
running on HDDs. In this equation, r is the number of handled

requests (our variable), E(DBNVMe,HDD) is the energy per
request for NVMe/HDD based databases respectively, C is the
carbon intensity of the electricity source, S is the size of the
storage device and SEFNVMe,HDD are the storage embodied
factors for NVMe and HDD. Here E(DBNVMe,HDD) only
includes the energy consumed by the storage device. It is
deduced from the results we presented in Section III-B.

r ∗ E(DBNV Me) ∗ C + S ∗ SEFNV Me <

r ∗ E(DBHDD) ∗ C + S ∗ SEFHDD (1)

The solution to this inequation indicates the minimum
number of requests an SSD-based system needs to serve
during its lifetime for its lifecycle carbon footprint to be lower
than that of an HDD-based system. Taking into account the
throughput of the database running on a NVMe SSD, we get
the time the SSD needs to operate to outperform the HDD in
terms of carbon footprint.

Figure 3 presents the results in number of days as a
function of the carbon intensity of the electricity powering
the datacenter. It shows results for RocksNVMe as well as
KVell on NVMe1 and NVMe2. As discussed in Section II-A
the embodied carbon cost of hardware is difficult to determine
and results can differ significantly depending on device model
or data source [8]. Different SEF values have a strong impact
on our analysis: the higher the embodied footprint of SSDs
in relation to that of HDDs, the more the SSD will have to
compensate during operation. Thus, we also evaluate each sys-
tem with three different assumptions on the Storage Embodied
Factor (SEF), using the numbers collected by Tannu et al.
[8]: an average case (ac) where we take the average SEF for
both SSD (0.16kG/GB CO2e) and HDD (0.02kG/GB CO2e),
a best case for HDDs (bc) with the highest value for SSDs
(0.34kG/GB CO2e) and the lowest for HDDs (0.005kG/GB
CO2e) as well as a worst case (wc) with the lowest value
for SSDs (0.033kG/GB CO2e) and the highest for HDDs
(0.06kG/GB CO2e).

Figure 3 shows results for a uniform distribution of the
requests for YCSB A, which is the workload where the per-
formance gap (in terms of energy per request) between Rock-
sHDD and the SSD-based databases is the smallest. To sim-
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plify the reading, we make the results for two carbon-intensity
mixes appear explicitly: the one of Germany (381g/kWh
CO2e), a country with an ongoing transition to renewable
energies, and the one of Norway (30g/kWh CO2e), one of the
least carbon-intensive electricities worldwide. We also choose
to focus on the uniform distribution because it stresses the
storage device more than the zipfian distribution, where most
queries will be served from memory.

A number of observations can be made on this plot. First,
the carbon intensity of the datacenter electricity has a strong
influence on the comparison between HDD and SSD. Indeed,
the dirtier the energy source (ex. Germany), the quicker SSDs
will pay off as the higher energy consumption per request of
HDDs has a bigger impact when the electricity has high emis-
sions. This is why for the example of Germany, amortization
times for RocksNVMe and KVell are short. On the contrary,
with a cleaner power source (ex. Norway), the operational
energy consumption contributes less to the lifecycle carbon
footprint. Therefore, SSD-based systems need to run for longer
before they can compensate their embodied footprint and
outperform RocksHDD in terms of lifecycle footprint. As can
be seen, with Norwegian electricity KVell on NVMe1 would
have to run for 1.8 years before its lifecycle footprint becomes
lower than that of RocksHDDs. Moreover, RocksNVMe would
need to run for 4.4 years which introduces the question about
device lifetimes: if an SSD-based system would need more
time than what can be expected as lifetime to compensate
its embodied footprint, it would not be beneficial to employ
SSDs. We investigate this question in Section IV-B.

The general trend of the curves shows that the less carbon-
intensive the electricity powering the datacenter is, the more
time it takes for SSD-based systems to compensate their
higher embodied footprint with a better energy efficiency
during operation. Considering the increasing efforts to use

cleaner energy to reduce the carbon footprint of datacenter
operation [5], [27], [28], it implies that the question of the
best storage device type will remain valid.

We can also observe on the figure that the different as-
sumptions for the SEF of the devices can strongly impact
the conclusions. In the considered best-case scenario (bc –
dashed lines), that is, when the SEF of HDDs is lowest and
that of SSDs is highest, the time needed for the SSD to become
advantageous increases significantly compared to the average
case. On the other hand, in the worst-case scenario (wc –
dotted lines) SSDs would be unconditionally superior as their
embodied footprint would be better than the one of HDDs. In
the rest of the analysis, we will only consider the average
SEF values for clarity, but we need to keep in mind that
different SEF estimates could lead to different conclusions.
Perhaps surprising is that the operational differences between
two SSD models barely influence the results. NVMe 2 delivers
on average 20-30% higher throughput than NVMe 1 with a
similar power consumption, yet their amortization times are in
the same order of magnitude. This hints that when reasoning
about lifecycle carbon footprints of SSDs, the performance is
less important than the embodied footprint.

We omit results for workloads B, C and E because the plots
follow the same trends as workload A. Workloads B and C are
worst-case scenarios for RocksHDD as they consist of almost
exclusively random reads. The SSD-based systems are superior
here as they are not negatively impacted by such a workload,
and on the contrary perform better on read queries. For YCSB
E, plotting the results would not give any additional insights
compared to YCSB A. Yet, interestingly, despite RocksHDD
performing relatively better on this workload compared to
the other databases, the energy per request is higher for all
systems. Therefore, the proportion of the operational emissions
increases, which leads to lower amortization times for SSDs
than what we observed for YCSB A.

The plots for the zipfian request distribution again follow the
same pattern as Figure 3, with overall slightly higher amorti-
zation times because of the reduced performance gap between
HDD and SSD compared to the uniform accesses. Still, it is
difficult to interpret these results as in this configuration, most
queries will be handled from memory. Thus, in the following
we will continue to focus on the uniform distribution.

While useful to get an initial comparison between SSD
and HDD, the approach presented in this section has some
limitations. First, it does not take into account the full power
consumption of the system (CPU, memory) and only con-
siders storage. More importantly, it ignores the fact that to
accomplish the same amount of work as an SSD running at
maximum throughput over its lifetime, an HDD would either
have to run for much longer, well beyond its expected lifetime,
or we would have to add more HDDs to run in parallel. On the
other hand, given that we used the numbers of Section III as
base here, the SSD-based systems were assumed to always run
at full capacity, which is probably almost always unrealistic.
Therefore, in the next section, we follow a different approach
to consider more realistic scenarios.



B. Lifecycle carbon emissions of storage systems

In this section, we run an analysis taking into account
the power consumption of not only the storage devices but
also of the CPU and memory resources used by the KV
store. Furthermore, we want to find realistic configurations
in which HDD-based systems could have a lower lifecycle
carbon footprint than SSD-based ones. When SSDs run at
maximum throughput, HDD-based systems cannot compete
in terms of performance. However, when considering cases
where the bandwidth of SSDs is not fully used, we can
envision scenarios where multiple HDDs, typically in a RAID-
0 configuration [34], would be used instead of a single SSD.
We now explore such configurations.

Equation 1 needs to be updated to take into account our
new assumptions. Namely, we introduce Equation 2, where H
represents the number of HDDs. We obtain H with Equation 3
where T is the target throughput, T (DBHDD) is the through-
put of RocksHDD and sc is the scaling factor to estimate
the performance of a multi-drive database. We introduce sc
to take into account that it is difficult to anticipate the exact
scaling of a KV store when running on top of multiple disks,
as it depends very much on the access patterns. We run our
analysis with different values for sc.

Note also that in Equation 2, E(DBNVMe,HDD) has been
replaced by Efull(DBNVMe,HDD) to represent the power
consumption of the CPU and the memory of our server, in
addition to the power consumption of the storage device.

r ∗ Efull(DBNV Me) ∗ C + S ∗ SEFNV Me <

r ∗ Efull(DBHDD) ∗ C + S ∗ SEFHDD ∗H (2)

H = ⌈ T

T (DBHDD) ∗ sc⌉ (3)

1) Instantiating the model: To run an analysis under our
new assumptions, we need to collect data for the case where
an NVMe-based KV store runs below its max performance.
The results presented in Section IV-A show that results with
RocksNVMe and the two instances of KVell are qualitatively
the same. Hence, to simplify the analysis, we only consider
KVell running on NVMe1 in the following. Furthermore, we
focus on workloads A and E as RocksHDD performs best on
these two workloads, and our goal is to identify whether there
are cases where a system based on HDDs would perform better
with respect to the carbon footprint than a system based on
SSDs. Because estimating the performance of a RAID system
under a zipfian access pattern is difficult and we did not have
the hardware to perform the necessary benchmarks, we will
only discuss a uniform request distribution.

Here is the configuration that we consider. First, since we
are not running at maximum performance, we assume a config-
uration where the KV store uses only 10% of the database size
as memory, instead of the 30% used in Section III. Second,
we assume that KVell processes on average 4000 requests per
second for YCSB A and 400 requests per second for YCSB
E. This corresponds to 7.5% and 20% of KVell’s maximum

throughput with 10% memory. These numbers are rather low.
Hence, if we cannot find a configuration where an HDD-based
solution has a better lifecycle carbon footprint than an SSD-
based solution, it means that SSDs should always be used to
minimize the carbon footprint of KV stores.

We should mention that based on our measurements, using
a single HDD and 10% of memory, RocksHDD achieves a
throughput of 722 requests per second for YCSB A and 112
requests per second for YCSB E. Hence, assuming a perfect
scaling, 6 HDDs are needed for RocksHDD to handle the 4000
requests per second for YCSB A, and 4 HDDs are needed to
handle 400 requests per second for YCSB E.

Finally, regarding the embodied carbon cost, in the follow-
ing we consider the average case discussed in Section IV-A,
where the SEF of an SSD is 8 times higher than that of an
HDD.

2) Results with uniform workloads: Results for the solu-
tions of Equation 2 are presented in Figure 4. Considering
different lifetimes for the devices (coded by color), the figure
presents the maximum carbon intensity of the electricity
powering the databases for which RocksHDD would have a
lower lifecycle carbon footprint than KVell according to the
scalability factor of RocksHDD when running with multiple
HDDs. Figures 4a and 4b show the results for YCSB A and
YCSB E respectively.

To illustrate the results, we consider the case of YCSB A
assuming a device lifetime of 5 years and a scaling factor
of 0.8. Figure 4a show that in this case, if the database is
powered with an electricity emitting 48 g/kWh CO2e or less,
the lifecycle carbon footprint of RocksHDD would be lower
than that of KVell. If the electricity was more carbon intensive,
KVell’s lifecycle carbon emissions would be lower.

Overall, both workloads exhibit a similar pattern. Whenever
a lower scaling factor implies that a new HDD needs to be
added to reach the target performance (e.g. from sc 0.95 to 0.9
on YCSB A), the embodied carbon of RocksHDD increases
and as a consequence, the electricity needs to be less carbon
intensive for RocksHDD to keep a lower carbon footprint
than KVell. As soon as 8 or more HDDs are needed (sc <
0.8 for YCSB A), the embodied cost of RocksHDD is the
same (or higher) as that of KVell running on a single NVMe,
and KVell will have a lower lifecycle footprint, no matter the
carbon intensity of the electricity. Taking again the example
of Norway’s electricity carbon intensity (30 g/kWh CO2e),
and assuming a scaling factor of 0.8, RocksHDD would be
the better choice for YCSB A even with an expected storage
device lifetime of 7 years. This suggests that when low-
carbon electricity is available, there are indeed scenarios where
employing more HDDs instead of upgrading to an SSD would
be better in terms of lifecycle carbon footprint.

Results for YCSB E need to be taken with care, mostly
because the performance scaling is harder to predict for scan
workloads and it is expected to be lower than for point lookup
workloads. The 400 requests per second mean that we need
5 or fewer drives for a scaling factor of 0.75 or higher. This
results in KVell relying on very carbon intensive energy to
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Fig. 4: Carbon intensity of electricity thresholds below which RocksHDD’s lifecycle
carbon footprint is lower than KVell’s as a function of the scaling factor applied for the
multiple HDDs of RocksHDD, comparing different device lifetime assumptions

compensate its embodied emissions or not being able to do
so at all in case of a scaling of 0.9 or higher. Yet, it is not
clear if such a scaling is realistic. Moreover, while 400 requests
correspond to 20% of KVell’s maximum throughput with 10%
memory, Section III showed that RocksNVMe delivers much
better performance on YCSB E and is thus better suited for
this type of workload.

The key takeaways of this analysis are that first, a more
carbon intensive electricity favors SSDs, in line with Sec-
tion IV-A. Second, long device lifetimes (> 5 years) also
favor SSDs, keeping in mind that storage device lifetimes in
datacenters are not well studied [7]. Ultimately, unless certain
conditions are fulfilled (low carbon electricity, short device
lifetimes), the results suggest that SSD-based systems will
have a lower lifecycle carbon footprint.

3) The Impact of SEF Values: Section IV-A showed that
the SEF values impact the comparison of the systems. In that
section, we considered the case of different ratios between
the SEF of SSDs and HDDs. Yet, another phenomenon could
impact the SEF of storage devices. As per the results presented
in [29], the SEF of SSDs and HDDs tends to decrease as
manufacturers improve their production process.

To study the impact of this point, Figure 5 presents the same
results as Figure 4, assuming a device lifetime of 5 years and
still assuming that SSDs have an 8 times higher SEF than
HDDs, but assuming different values of SEF for the devices.

As can be seen, lower SEF values favor the SSD-based sys-
tems. This is because a lower SEF implies that the proportion
of the embodied footprint in the lifecycle footprint will be
lower. Therefore, since the SSD-based systems have a lower
operational footprint, they become better overall.

C. Discussion

The results presented in this section tend to show that,
despite their higher embodied carbon emissions, SSDs should
be preferred over HDDs to reduce the overall carbon footprint
of datacenters. Only in cases where SSDs would be far
from being used at their full potential, and where the carbon
intensity of the electricity powering the datacenters would
be very low, could a solution based on HDDs be beneficial.
However, our analysis shows that it is a complex problem
where a large set of factors need to be taken into account to
draw accurate conclusions.
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Of course, several questions remain open at the end of this
study. We list a few of them in the following. First, we only
considered the case of KV stores. It would be important to
understand how different the results would be for other types
of databases. Second, the results we obtained heavily depend
on the SEF considered for the different devices. Existing
studies show that the values vary dramatically depending on
the source (e.g., storage device manufacturers vs hardware
vendors) providing the information [8], [29]. More research
is required in this domain to obtain reliable numbers.

Our study assumes that the lifetime of SSDs and HDDs
is the same. This is probably not true. However, we miss
data regarding this matter since the common approach in
datacenters is to replace storage devices before they get too
old [7]. Since extending the lifetime of devices is a simple
solution to reduce the embodied footprint of datacenters, we
should see more research in this direction in the coming years.

Finally, it should be noted that the systems considered in
this study have been designed with the goal of optimizing per-
formance but not energy consumption. Alternative solutions,
maybe still to be designed, might be able to achieve better
energy efficiency both for HDD and SSD-based systems. Such
solutions might involve designing new algorithms but also
adapting the hardware by using less power-hungry processors
for storage servers or running processors at lower frequency.

V. CONCLUSION

This paper studies the carbon footprint of storage in dat-
acenters, comparing the benefits of using SSDs and HDDs.
Considering the case of KV stores as storage engine, we
present an extensive set of experiments with state-of-the-
art solutions to evaluate the power consumption and energy
efficiency of systems based on the two types of devices. Using
specialized wattmeters and considering different representative
workloads, we show that the energy consumption of SSDs is
complex and can be much higher than that of HDDs. However,
because of their better performance, using NVMe SSDs leads
to better energy efficiency, especially if we consider the total
power consumed by storage servers, including the power
consumed by the CPU and the memory.

Using the obtained data, we ran analyses about the overall
carbon footprint of such storage systems, taking into account
both their embodied and operational carbon footprint. Our



results show that SSDs allow achieving a lower carbon foot-
print than HDDs in most cases. The much higher operational
efficiency of NVMe SSDs allows them to compensate for their
higher embodied emissions. Only in cases where the electricity
powering the datacenter would have a very low carbon inten-
sity and where the full throughput potential of SSDs would
not be used, could HDDs provide some advantages.

As our analysis shows, the question tackled is the paper is
complex. It was impossible for us to take all the parameters
that might influence the results into account. More research
on this topic should be conducted, for instance, to understand
if the presented results are specific to KV stores, or if they
remain valid no matter the storage engine.
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