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This lecture studies some parallel algorithms and their implementation in a distributed memory
system. Three problems are considered: a matrix-vector multiplication, a matrix-matrix multipli-
cation, and a stencil computation. To reason about the algorithms we assume that the processes
are organized in a virtual ring topology.

1 About performance of parallel distributed algorithms

The execution of an algorithm in a distributed memory parallel system involves two costs:

• The cost of running computation (floating point operations in our context)

• The cost of moving data

– from the memory to the processors
– between nodes (over the interconnection network)

The total cost of a distributed parallel algorithm is the sum of 3 terms:

1. A computational term: nb of flops × time per flop

2. A bandwidth term: amount of data moved × 1
bandwidth

3. A latency term: nb of messages × latency

A parallel programmer should remember that in general:

time_per_flop ≪ 1

bandwidth
≪ latency

It follows that minimizing communication in a distributed parallel algorithm is important to
save time.

In the following, we will ignore the cost of moving data from/to the memory when computing
the execution time of an algorithm. In practice, this cost is mostly hidden by hardware prefetchers
in modern processors when the data access patterns are regular (as it is the case in the algorithms
presented below).

Hence, when computing the execution time of an algorithm, we will use the following values:

• L: the latency of a network communication
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• B: the bandwidth of a network communication

• w: the computation time for one basic unit of work (depends on the algorithm)

About the motivations behind distributed parallel computing Note that distributing the
data and the computation over several nodes is not only good to speed-up the computation. It can
enable to solve larger problems than with a single node. Indeed, it can be the case that the input
data is so big that it does not fit in the memory of one node. In this case, distributing the data
over p nodes allows storing a much larger amount of data in memory.

2 Stencils

We study stencil algorithms which is a class of algorithms commonly found in parallel applications.
Stencil algorithms operate on cells that divide a discrete domain. Cells can hold one or multiple

values, and they have neighboring cells. Cells are in general organized in a N-dimensional grid (often
2D or 3D). They are non-overlapping and of equal size to improve load balancing. An example of
2D domain divided in cells is given in Figure 1. When the studied domain becomes very large, one
may want to run the stencil in parallel on multiple nodes.

Figure 1: An example of 2D stencil (heat diffusion).

The stencil algorithm is an iterative algorithm that applies a pre-defined function to update the
value of the cells based on the value of the neighboring cells. The location of a cell’s neighbors and
the function used to update cell values form a “stencil” that is applied to all cells in the domain.

In the following, we are studying stencils applying to 2-dimensional domains. A 2D stencil
implies that a cell can have at most 8 neighbors that can be identified using cardinal coordinates:
N , NE, E, SE, S, SW , W , NW .

3 A stencil algorithm

The stencil algorithm we consider applies the following function to update cells:

cnew = Update(cold,Wnew, Nnew)

It means that the new value of a cell (cnew) depends on the previous value of the cell (cold)
and the already updated value of the west and north neighbors (Wnew and Nnew). The stencil is
represented in Figure 2.
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Figure 2: Illustration of the stencil

Note that the stencil cannot be applied as it to cells at the border of the domain that do not
have north or west neighbors. This is handled by applying a modified Update function to these cells
(for instance, assuming that the value of the non-existing cells is a constant).

We point out that although simple, this stencil is of practical importance as it is at the root
of some numerical algorithms (e.g., the Gauss-Seidel iterative method to solve a linear system of
equations).

3.1 Greedy algorithm

We study a first parallel algorithm on an unidirectional ring of processors for the stencil application
described above. We assume p processors. We assume that the problem includes n× n cells.

The algorithm we introduce is greedy. By greedy, we mean that the algorithm tries to put all
processors to work as early as possible.

To distribute the work, we allocate rows of data to processors. To start reasoning about the
algorithm, we make the simplifying assumption that there are as many processors as the number of
rows, i.e., p = n. In this case, the main principles of this algorithm are:

• Each processor stores one row. Row i is stored on processor Pi.

• As soon as a processor Pi has computed a value, it sends it to processor Pi+1.

If A is the domain on which the stencil is applied, we note Ax,y (or A[x][y]) the y-th element on
row x.

Figure 3 shows the execution of the algorithm. The number associated with each cell is the
step in which the cell is updated. As it can be observed in the figure, in the first step only A0,0 is
computed. In the second step, A1,0 and A0,1 can be computed. More generally, in step k, the k-th
anti-diagonal can be computed.

Figure 4 details the greedy algorithm. Note that the algorithm deals with the two special cases
of processor P0 that does not receive north values from another processor, and Pn−1 that does not
need to send its updated values. Ignoring these two special cases, we can say that at iteration i+ j
processor Pi performs the following operations:

• Receives Ai−1,j from Pi−1;

• Computes Ai,j ;
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Figure 3: Parallel execution of the greedy algorithm

• Sends Ai,j to Pi+1.

Furthermore, the send operation for iteration j can occur in parallel with the receive operation for
iteration j + 1 (symbol ∥).

3.2 Dealing with larger domains

Until now we have assumed that n = p. However, in general we will have n > p. The question that
arises is: What scheme should be used to assign rows to processors? For the sake of simplicity, we
will assume in the following that p divides n.

A first answer is to assign a set of consecutive rows to each process. However, such a solution
has a major drawback: It does not follow the main idea of our greedy algorithm. Indeed, before
P1 can start working, it has to wait until P0 has computed the first value on each row assigned to
it, i.e., P1 has to wait at least n

p steps. The same delay will be observed between the time when
P1 starts working and P2 starts working, etc. We can conclude that such a solution will not allow
to take full advantage of all the processors available, as it does not make them start computing as
early as possible.

To make the processors start working as early as possible, we can assign rows to processors in
a cyclic manner, as illustrated in Figure 5. With this solution, row j of the domain is assigned to
processor Pk with k = j mod p.

The corresponding version of the algorithm is presented in Figure 6. It is very similar to the
algorithm presented in Figure 4. The main difference is that each processor stores n

p rows and needs
to iterate over these rows. Note that on each processor, the allocation is made as a continuous set
of rows (line 1) although it corresponds to non-contiguous rows in the domain.

We can compute the execution time of our greedy algorithm using cyclic row assignment as a
function of p and n. To simplify the notations, we note b as the time to transfer one cell (b =
sizeof(cell)

B ).
First, we compute the time to run one step of the algorithm. In the general case, in a step k,

3 operations need to be run by one process: receiving north value for step k; computing one cell;
sending value for step k + 1. One can notice that the send operation (at iteration n) can occur in
parallel with the reception (for iteration n+ 1). As such the execution time for one step is:

Tstep(p, n) = w + L+ b

Here w corresponds to the cost of executing the stencil Update() function for one cell.
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1 double A[n]; /* one row of A, assumed to be already initialized */
2 double north = 0; /* to recv North values */
3
4 int rank = my_rank ();
5 int P = num_procs ();
6
7 if (rank == 0){
8 A[0] = Update(A[0], NULL , NULL);
9 Send(A[0], rank +1);

10 }
11 else{
12 Recv(north , rank -1);
13 A[0] = Update(A[0], NULL , north);
14 }
15
16 for(j=1; j<n; j++){
17 if (rank == 0){
18 A[j] = Update(A[j], A[j-1], NULL);
19 Send(A[j], rank +1);
20 }
21 else if(rank == P-1){
22 Recv(north , rank -1);
23 A[j] = Update(A[j], A[j-1], north);
24 }
25 else{
26 Send(A[j-1], rank +1);
27 ∥
28 Recv(north , rank -1);
29 A[j] = Update(A[j], A[j-1], north);
30 }
31 }

Figure 4: Greedy algorithm for the first stencil

Figure 5: Cyclic row assignment with 4 processes. Each processor is associated with one color

To compute the total execution time, we need to compute the total number of such steps until
the last cell has been updated. This happens when processor Pp−1 computes the rightmost cell of
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1 double A[n/p][n]; /* n/p rows of A */
2 double north = 0; /* to recv North values */
3
4 int rank = my_rank ();
5 int P = num_procs ();
6
7 for(i=0; i<n/p; i++){
8 if (rank == 0 && i == 0){
9 A[0][0] = Update(A[0][0] , NULL , NULL);

10 Send(A[0][0] , rank +1);
11 }
12 else{
13 Recv(north , rank -1);
14 A[i][0] = Update(A[i][0], NULL , north);
15 }
16
17 for(j=1; j<n; j++){
18 if (rank == 0 && i == 0){
19 A[i][j] = Update(A[i][j], A[i][j-1], NULL);
20 Send(A[i][j], rank +1);
21 }
22 else if(rank == P-1 && i == n/p-1){ /* case of the last row */
23 Recv(north , rank -1);
24 A[i][j] = Update(A[i][j], A[i][j-1], north);
25 }
26 else{
27 Send(A[i][j-1], (rank +1) % P);
28 ∥
29 Recv(north , (rank -1) % P);
30 A[i][j] = Update(A[i][j], A[i][j-1], north);
31 }
32 }
33 }

Figure 6: Greedy algorithm for n > p

its last row. We make the following observations:

• It takes p− 1 steps before processor Pp−1 starts computing its first cell

• From this point, processor Pp−1 updates one cell per step

• Processor Pp−1 has n
p × n cells to compute in total.

Hence the total execution time of the algorithm is:

T (n, p) = (p− 1 +
n2

p
)× (w + L+ b)

When n becomes large, the execution time is equal to:

T (n, p) =
n2

p
× (w + L+ b)
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The execution time of the sequential algorithm is n2×w. We can compute the speedup obtained
with p processors:

Speedup =
Tseq

Tpar

=
n2 × w

n2

p × (w + L+ b)

= p× w

w + L+ b
< p

Since the speedup is less than p, we can conclude that the algorithm is not optimal. As discussed
earlier, the network latency L can have a high impact on the performance of parallel algorithms.
In the case of our algorithm, the latency term (n

2

p × L) can have a severe impact on the parallel
execution time.

3.3 Bulk communication

To reduce the latency term, the general idea is to try sending less messages. In general, sending
less messages is done by sending larger messages.

To send larger messages, a solution is to have each processor computing k values on one row
before sending the updates to the next processor. In this case n2

k messages will be sent in total
instead of n2. On the other hand, processor i will have to wait i×k steps before starting executing.

We can compute the execution time of this new algorithm. We start by computing the execution
time for one step, i.e., the time one processor needs to process k values:

Tstep = k × (w + b) + L

To compute the total execution time, we observe that:

• It takes p− 1 steps until processor Pp−1 starts working.

• Processor Pp−1 should run n2

p×k such steps

Hence, the total execution time of the algorithm is:

Tbulk(p, n, k) = (p− 1 +
n2

p× k
)× (k × (w + b) + L)

When n becomes large, the execution time can be simplified as:

Tbulk(p, n, k) =
n2

p
× (w + b+

L

k
)

Hence, we obtain the expected result: the latency term is divided by k. However this solution
does not perform that well when n is not large enough for the startup time1 to be ignored. We

1We call startup time, the time until the last processor starts computing.

7



can notice that this startup time is partially multiplied by k. Hence, if k is large, the startup time
significantly increases.

A question that arises with this new solution is: what values of k ensure that a processor is
never idle ones it has started computing. To answer this question, we study the case of processor
P0. Processor P0 has to process n

k chunks before starting computing its second allocated row. We
also know that it takes p steps until P0 receives a first update from Pp−1. As such the condition
that ensures that P0 is never idle is:

p ≤ n

k
⇒ k ≤ n

p

3.4 Reducing the amount of data communicated over the network

The solution presented above requires the same amount of data to be communicated over the
network as the initial greedy algorithm. To further improve the performance of the algorithm, we
should decrease this amount.

The solution to decrease the amount of data communicated over the network is to allocated
blocks of r consecutive rows to the same processor as presented in Figure 7. Combined with the
previous modification, we obtain a block-cyclic allocation with blocks of size r × k. With this
solution, the total amount of communication is divided by r, since only the updates of the last row
of a block need to be sent to the next processor.

Figure 7: Bloc-cyclic allocation with p = 4, n = 16, k = 4, and r = 2. Each processor is associated
with one color. Light and dark colors are used to illustrate blocks.

We can compute the execution time of the new algorithm. To do so, we start by computing
the execution time for one step, i.e., the time required to process one r × k block, including the
communication time:

Tstep = r × k × w + k × b+ L

To compute the total execution of the algorithm, we observe that:

• It takes p− 1 steps until processor Pp−1 starts working.

• Processor Pp−1 should run n2

p×r×k such steps
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Hence the total execution time is:

Tblock−cyclic(n, p, r, k) = (p− 1 +
n2

p× r × k
)× (r × k × w + k × b+ L)

When n becomes large, the execution time can be approximated as:

Tblock−cyclic(n, p, r, k) =
n2

p
× (w +

b

r
+

L

r × k
)

In this new version, both the latency and the bandwidth term are reduced compared to the
execution time of the initial greedy algorithm. Increasing r helps improving the speedup observed
with the parallel version of the algorithm when n is large. However, one should be careful when
selecting r. If r is too large, the cost of the algorithm startup time is going to become prohibitive.
Computing the optimal values of r and k goes beyond the scope of this lecture.

4 Matrix-vector multiplication

We study a matrix-vector multiplication problem y = Ax where A is a matrix of size n× n and x,
y are vectors of size n. Figure 8 describes the sequential implementation of the algorithm.

1 for(i=0; i<n; i++){
2 y[i] = 0;
3 for(j=0; j<n; j++){
4 y[i] = y[i] + A[i][j] × x[j]
5 }
6 }

Figure 8: Sequential matrix-vector multiplication

4.1 Parallel algorithm

We can observe that the computation of each value of the result vector y is the scalar product
between a row of A and the vector x. Each scalar product is independent: They can be executed
in any order. As such, a simple parallel version of the algorithm consists in distributing the rows of
A over p processors so that each processor can compute r = n

p scalar products in parallel2.

4.2 Data distribution

Figure 9 presents the basic distribution of data to implement the matrix-vector product algorithm.
In this version, it is assumed that all processors have a copy of the vector x in their memory.

As already mentioned, Figure 9 assumes that all processors have a copy of the vector x. However,
when implementing a library function that computes a matrix-vector multiplication, in general, one
prefers assuming that blocks of x are distributed over the nodes in the same way as matrix A. The
motivation behind this assumption is that in practice, one might want to run several matrix-vector

2For the sake of simplicity, we will always assume that p divides n.
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Figure 9: Distributed matrix-vector multiplication over 4 processors. All data with the same color
are on the same processor

multiplications in a sequence. Imagine that one wants to run z = By after y = Ax. In this case, at
the beginning of the second matrix-vector multiplication, the vector y is already distributed over the
nodes as shown in Figure 9. Thus, having a code that can deal with this case is good for modularity.

Considering a virtual ring network topology, the basic steps of one iteration of the new matrix-
vector multiplication algorithm are:

• Each processor computes a partial result using the elements of x it has in its local memory

• Each processor sends its block of x to its successor and receives from its predecessor in the
virtual ring.

The algorithm has to run over p iteration to terminate.
Figure 10 illustrates the execution of this algorithm with 4 processes. If A is a n × n matrix,

each process stores n
4 rows of A and n

4 values of x.
The algorithm presented in Figure 11 details the parallel version of the matrix-vector multipli-

cation. A few points should be discussed about this algorithm:

• The algorithm is designed to allow the communication and the computation inside one step
to occur in parallel (symbol ∥).

• Running the communication and the computation in parallel requires to allocate an extra
buffer (tempR) for the communication.

• One can notice that the communication is not mandatory in the last iteration of the algorithm.
However, it allows restoring the initial distribution of the blocks of x, which can be a desirable
property.

• As it can be observed in Figure 10, when process k computes based on a block q of values of
x (i.e., the values at index q × r to ((q + 1)× r)− 1 of the initial vector x), the computation
applies to the block q of the sub-part of matrix A stored locally (Ak,q). Hence, the index of
the block of A to use for process with id rank in a given step if there are P processes in total
is:

block = (rank − step) mod P
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Figure 10: Distributed matrix-vector multiplication over 4 processors with blocks of vector x dis-
tributed over the processors. Colors borders for blocks of vector x refer to the initial position of the
blocks.

We can compute the execution time of the algorithm described in Figure 11 assuming p processes
and a matrix of size n× n with r = n

p . To compute the execution time, we additionally use:

• L: the latency of a network communication

• B: the bandwidth of a network communication

• w: the computation time for one basic unit of work (two floating point operations in line 19)

We assume that the time to receive of message is the same as the time to send a message (=
L+ r

B ). Since there are p iterations of the algorithm and since computation occur in parallel with
communication, the execution time is:

TMV (p) = p×max(r2 × w,L+
r

B
)

= max(
n2

p
× w, p× L+

n

B
)
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1 double A[r][n]; /* rows of A, assumed to be already initialized */
2 double x[r]; /* values of x, assumed to be already initialized */
3 double y[r];
4
5 int rank = my_rank ();
6 int P = num_procs ();
7
8 double tempS[r], tempR[r];
9

10 tempS ← x; /* copy of the values */
11 for(step = 0; step < P; step ++){
12 Send(tempS , (rank + 1) mod P );
13 ∥
14 Recv(tempR , (rank − 1) mod P )
15 ∥
16 int block= (rank − step) mod P ;
17 for(i=0; i<r; i++){
18 for(j=0; j<r; j++){
19 y[i] = y[i] +A[i, r × block + j)]× tempS[j]
20 }
21 }
22 tempS ← tempR;
23 }

Figure 11: Parallel matrix-vector multiplication. The symbol ∥ implies that lines 12, 14 and 17 can
be executed in parallel. The symbol ← implies a memory copy.

When n becomes large, then the execution time is asymptotically equal to:

TMV (p) =
n2

p
× w

which implies that a speedup of p is to be observed compared to the sequential version of the
algorithm when using p processors.

5 Additional comments

About the implementation using MPI For an MPI implementation of the algorithms pre-
sented in this document, we recall that using the MPI_Send() and the MPI_Recv() for communication
would prevent the communication and the computation to occur in parallel. It might also not allow
a send and a receive communication to occur in parallel.

To allow them to occur in parallel, one should use the non-blocking functions MPI_Isend() and
MPI_Irecv() instead. Note that even in this case, one might not observe a full overlapping of the
communication and computation in practice depending on the characteristics of the NIC (Network
Interface Controller).

Data distribution In general, the algorithms described in this document assume that the data are
initially already distributed among the processes. In practice, the data might already be distributed
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over the processes or might be hosted by a single process originally:

• The case where the data are on a single process can correspond to a scenario where one process
initially read the data from a file. Note however that IO libraries implementing parallel accesses
to files exists (e.g., MPI-IO).

• The case where the data are already distributed can correspond to a scenario where the data
is the result of a previous distributed computation, as seen in the vector-matrix multiplication
algorithm.

If one assumes a model where the data is located on a single node initially and should be
aggregated on a single node again at the end of the execution, then scatter and gather collective
operations can be used to implement these extra data movements.

6 Summary of some algorithmic principles

While studying these parallel algorithms, we have introduced some general (and sometimes contra-
dictory) principles that can be applied to develop efficient algorithms in distribute shared memory:

• Sending data in bulk to limit the impact of network latency

• Sending data early to avoid having idle processors

• Overlapping communication and computation

• Assigning blocks of data to processors to limit the amount of communication and have regular
access patterns for the computation

• Applying cyclic data distribution to increase load balancing between processors and reduce
idle time.

References

Some references can complement the material presented in these lecture notes:

• Section 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, and 4.8 of the book "Parallel Algorithms" (by Casanova,
Robert, and Legrand).

The material presented in this document is strongly inspired by these sections of the book.
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7 A second stencil (Jacobi) – TO STUDY OPTIONALLY

To have a more complete study of stencil algorithms, we consider another stencil. The function
used to update cells is:

cnew = Update(cold,Wold, Eold, Nold, Sold)

The new value of the cell depends on the old value of the cell, and on the old values of the 4
neighbors (West, East, North, South), as illustrated in Figure 12. Such a stencil is also employed
in some numerical methods (e.g., jacobi numerical method).

c

N

W E

S

Figure 12: Illustration of the stencil

This new stencil implies 3 major changes compared to the study conducted previously:

• All computations can potentially be run in parallel since the update of a cell only depends on
old values.

• It is not possible to update the cells in place without overwriting values that would be later
needed. Therefore a second copy of the domain needs to be stored in memory with the updated
values of the cells.

• Since both north and south values are needed by the update function, an unidirectional ring
is not very appropriate for such a computation. We choose to use a bidirectional ring instead.

For this algorithm, we allocate r = n
p consecutive rows to each process. With this allocation,

processor Pi:

• Needs to receives data from processor Pi−1 to be able to run the computation for the first row
of its sub-domain;

• Needs to receives data from processor Pi+1 to be able to run the computation for the last row
of its sub-domain;

• Can immediately run the computation for all the other rows of its sub-domain.

For the sake of simplicity in the description of the algorithm, we will assume that the domain
can be seen as a torus, i.e., P0 and Pp−1 exchange rows. Based on the previous observation, we can
conclude that there are 3 main phases in the new stencil algorithm:
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1. Exchanging data at the border of the sub-domains

2. Computing the updated values for the cells inside each sub-domains, excluding cells at the
border.

3. Computing the updated values for the cells at the border, using the data received from the
neighboring processes

Note that phases 1 and 2 can be run in parallel. The new algorithm is described in Figure 13:
Phase 1 corresponds to lines 9-16; Phase 2 corresponds to lines 18-25; Phase 3 corresponds to lines
26-34.

We compute the execution time of the new algorithm. For that, we start by computing the
execution time of each phase:

Tphase1 = 2× (L+ n× b)

Tphase2 = n× (r − 2)× w = (
n2

p
− 2× n)× w

Tphase3 = 2× n× w

Hence the total execution time of the algorithm is:

T = max
(
2× (L+ n× b), (

n2

p
− 2× n)× w

)
+ 2× n× w

We can observe that when n becomes large, the execution time can be approximated as:

T =
n2

p
× w

which implies that the algorithm is asymptotically optimal. We can conclude that a virtual ring
topology is very appropriate to implement parallel versions of this stencil.

8 Matrix-matrix multiplication – TO STUDY OPTIONALLY

We consider the matrix-matrix multiplication problem C = A×B where A, B, and C are matrices
of size n× n. The sequential implementation of the algorithm is described in Figure 14.

The parallel version of the matrix-matrix multiplication algorithm in a virtual ring topology with
p processes is an extension of the algorithm previously studied for matrix-vector multiplication.

The distribution of the data and the main ideas of the algorithm are described in Figure 15. In
a nutshell, the main principles are:

• The three matrices are distributed over the processes based on the rows. Each process stores
r = n

p rows of each matrix.

• In each iteration, a process run partial matrix-matrix multiplication computation based on
the data that are available locally.

• In each iteration, a process sends r rows of B to the next process and receives r rows of B
from the previous process in the virtual ring.
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1 double A[r][n]; /* r rows of A, holding the old values */
2 double B[r][n]; /* B will hold the updated value */
3
4 double fromN[n], fromS[n];
5
6 int rank = my_rank ();
7 int P = num_procs ();
8
9 { /* Phase 1: communication */

10 Send(A[0][*] , (rank − 1) mod P );
11 ∥
12 Recv(fromN , (rank − 1) mod P );
13 Send(A[r-1][*] , (rank + 1) mod P );
14 ∥
15 Recv(fromS , (rank + 1) mod P );
16 }
17 ∥
18 { /* Phase 2: computation */
19 for(i=1; i<r-1; i++){
20 for(j=0; j<n; j++){
21 B[i][j] = Update(A[i][j], A[i][j-1], A[i][j+1], A[i-1][j],
22 A[i+1][j]);
23 }
24 }
25 }
26 { /* Phase 3: computation */
27 for(j=0; j<n; j++){
28 B[0][j] = Update(A[0][j], A[0][j-1], A[0][j+1], fromN[j],
29 A[1][j]);
30 }
31 for(j=0; j<n; j++){
32 B[r-1][j] = Update(A[r-1][j], A[r-1][j-1], A[r-1][j+1], A[r-2][j],

fromS[j]);
33 }
34 }

Figure 13: Algorithm for the new stencil. The notation A[i][j-1] is not strictly correct. The notation
A[i][(j − 1) mod n] would be more precise. The notation A[0][∗] is used to make it explicit that a
full row of A is sent.

The algorithm requires p iterations to terminate.
As can be seen in Figure 15, in each iteration of the loop, a process runs p matrix-matrix

multiplications on matrix blocks of size r × r. Only the rows of B are exchanged between the
processes. Each process computes a sub-part of matrix C: process i is in charge of rows i × r to
((i+ 1)× r)− 1.

The algorithm for the parallel matrix-matrix multiplication on a logical ring of processes is
described in Figure 16. It is very similar to the one for matrix-vector multiplication but an additional
index (named l in Figure 16) is introduced to iterate over the blocks of B and C.
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1 for(i=0; i<n; i++){
2 for(j=0; j<n; j++){
3 C[i][j] = 0;
4 for(k=0; k<n; k++){
5 C[i][j] = C[i][j] + A[i][k] × B[k][j];
6 }
7 }
8 }

Figure 14: Sequential matrix-matrix multiplication

A1,0 A1,1 A1,2 A1,3

B1,0 B1,1 B1,2 B1,3

C1,0 C1,1 C1,2 C1,3

C1,k = C1,k +A1,1 ×B1,k

(Step 0)

B1,0 B1,1 B1,2 B1,3step 1

step 1 C1,0 C1,1 C1,2 C1,3

C1,k = C1,k +A1,0 ×B1,k

(Step 1)

Figure 15: Parallel matrix-matrix multiplication with 4 processes. The figure presents 2 iteration
of the algorithms and focuses on the computation run by process P1. The notation Al,k refers to
the block k in the part of matrix A stored by process l.

As for the matrix-vector multiplication algorithm, we can compute the execution time of the
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1 double A[r][n]; /* rows of A, assumed to be already initialized */
2 double B[r][n]; /* rows of B, assumed to be already initialized */
3 double C[r][n];
4
5 int rank = my_rank ();
6 int P = num_procs ();
7
8 double tempS[r][n], tempR[r][n];
9

10 tempS ← B; /* copy of the values */
11 for(step = 0; step < P; step ++){
12 Send(tempS , (rank + 1) mod P );
13 ∥
14 Recv(tempR , (rank − 1) mod P )
15 ∥
16 int block = (rank − step) mod P ;
17 for(l=0; l<P; l++){
18 for(i=0; i<r; i++){
19 for(j=0; j<r; j++){
20 for(k=0; k<r; k++){
21 C[i][l × r + j] = C[i][l × r + j] +A[i][block × r + k]× tempS[k][l × r + j];
22 }
23 }
24 tempS ← tempR;
25 }

Figure 16: Parallel matrix-matrix multiplication. The symbol ∥ implies that lines 12, 14 and 17 can
be executed in parallel. The symbol ← implies a memory copy.

matrix-matrix multiplication algorithm for matrices of size n× n and for p processes, as:

TMM (p) = p×max(n× r2 × w,L+
n× r

B
)

= max(
n3

p
× w, p× L+

n2

B
)

When n becomes large, then the execution time is asymptotically equal to:

TMM (p) =
n3

p
× w

which implies an optimal efficiency (speedup of p with p processors).

Bulk communication It is interesting to note that the parallel matrix-matrix multiplication
could also be implemented as n matrix-vector multiplications (one for each column of B). In this
case, the execution time of the algorithm would be:

TMM−alt(p) = n× TMV (p)

= max(
n3

p
× w, n× p× L+

n2

B
)
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Compared to the execution time TMM (p), the execution is still asymptotically optimal but the
latency term is multiplied by n (i.e., it is n× p×L). This is due to the fact that is this algorithm,
the data will be exchanged column by column, whereas in the algorithm of Figure 16, a set of rows
is sent as once. This might have a significant impact on the performance in practice.

Sending data in bulk is a general technique to reduce the cost of communicating over the network
in parallel algorithms, and more specifically, to reduce the impact of latency.

19


