
Parallel Algorithms and Programming
MPI

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

http://tropars.github.io/

2022

1

mailto:thomas.ropars@univ-grenoble-alpes.fr
http://tropars.github.io/

Agenda

Message Passing Systems

Introduction to MPI

Point-to-point communication

Collective communication

Other features

2

Agenda

Message Passing Systems

Introduction to MPI

Point-to-point communication

Collective communication

Other features

3

Shared memory model

Shared Memory

P0

P1

P2

P3

read/write

read/write

read/write

read/write

• Processes have access to a shared address space

• Processes communicate by reading and writing into the shared
address space

4

Distributed memory model
Message passing

P0

P1

P2

P3

Mem

Mem

Mem

Mem

send/recv

• Each process has its own private memory
• Processes communicate by sending and receiving messages

5

Applying the models

Natural fit
• The distributed memory model corresponds to processes
executing on servers interconnected through a network

However
• The distributed memory model can be implemented on top of
shared memory
▶ Send/Recv operations can be implemented on top of shared

memory

6

In large-scale parallel systems
And more generally in any cluster of machines

A large number of servers:

• Interconnected through a high-performance network

• Equipped with multicore multi-processors and accelerators

What programming model to use?

• Hybrid solution
▶ Message passing for inter-node communication
▶ Shared memory inside a node

• Message passing everywhere
▶ Communication inside the nodes are implemented with

message passing on top of the shared memory
▶ Less and less used as the number of cores per node increases

7

Message Passing Programming Model

Differences with the shared memory model

• Communication is explicit
▶ The user is in charge of managing communication
▶ The programming effort is bigger

• No good automatic techniques to parallelize code

• More efficient when running on a distributed setup
▶ Better control on the data movements

8

The Message Passing Interface (MPI)
http://mpi-forum.org/

MPI is the most commonly used solution to program message
passing applications in the HPC context.

What is MPI?
• MPI is a standard

▶ It defines a set of operations to program message passing
applications.

▶ The standard defines the semantic of the operations (not how
they are implemented)

▶ Current version is 4.0 (https:
//www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf)

• Several implementations of the standard exist (libraries)
▶ Open MPI and MPICH are the two main open source

implementations (provide C and Fortran bindings)

9

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Agenda

Message Passing Systems

Introduction to MPI

Point-to-point communication

Collective communication

Other features

10

My first MPI program
#include <stdio.h>

#include <string.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

char msg[20];

int my_rank;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == 0) {

strcpy(msg, "Hello !");

MPI_Send(msg, strlen(msg), MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}

else {

MPI_Recv(msg, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);

printf("I received %s!\n", msg);

}

MPI_Finalize();

}

11

SPMD application

MPI programs follow the SPMD execution model:

• SPMD = Single Program Multiple Data

• Each process executes the same program at independent
points

• Only the data differ from one process to the others
▶ At least the logical identifier (rank) of each process is different

• Different actions may be taken based on the rank of the
process

12

Compiling and executing

Compiling

• Use mpicc instead of gcc (mpicxx, mpif77, mpif90)

mpicc -o hello_world hello_world.c

Executing

mpirun -n 2 -hostfile machine_file ./hello_world

• Creates 2 MPI processes that will run on the 2 first machines
listed in the machine file (the allocation policy is
implementation dependent)

• If no machine file is provided, the processes are created on
the local machine

13

The execution of the hello world program

About the created processes

• Each process created by mpirun has a unique identifier called
its rank.

• Each process executes the same program but will execute
different branches of the code depending on its rank.

Result of our program

• In the hello world program, the process with rank 0 sends a
string to the process with rank 1 that receives it.

• Note that the program hangs if it is run with more than 2
processes:
▶ If a process with rank 2 is created, it will also try to receive a

message from rank 0 but it will never receive one.

14

Analyzing our example

Mandatory calls (by every process)

• MPI Init(): Initialize the MPI execution environment
▶ No other MPI calls can be done before Init().

• MPI Finalize(): Terminates MPI execution environment
▶ To be called before terminating the program

Note that all MPI functions are prefixed with MPI

15

Communicators and ranks

Communicators
• A communicator defines a group of processes that can
communicate in a communication context.

• Inside a group, processes have a unique rank

• Ranks go from 0 to p − 1 in a group of size p

• At the beginning of the application, a default communicator
including all application processes is created:
MPI COMM WORLD

• Any communication occurs in the context of a communicator

• Processes may belong to multiple communicators and have a
different rank in different communicators

16

Communicators and ranks: Retrieving basic information

• MPI Comm rank(MPI COMM WORLD, &rank): Get rank of the
process in MPI COMM WORLD.

• MPI Comm size(MPI COMM WORLD, &size): Get the number of
processes belonging to the group associated with MPI COMM WORLD.

#include <mpi.h>

int main(int argc, char **argv)

{

int size, rank;

char name[256];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

gethostname(name, 256);

printf("Hello from %d on %s (out of %d procs.!)\n", rank, name, size);

MPI_Finalize();

}

17

MPI Messages

A MPI message includes a payload (the data) and metadata
(called the envelope).

Metadata
• Processes rank (sender and receiver)

• A Communicator (the context of the communication)

• A message tag (can be used to distinguish between messages
inside a communicator)

Payload

The payload is described with the following information:

• Address of the beginning of the buffer

• Number of elements

• Type of the elements

18

Signature of send/recv functions

int MPI_Send(const void *buf,

int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

int MPI_Recv(void *buf,

int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Status *status);

19

Elementary datatypes in C

MPI datatype C datatype

MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE 1 Byte
MPI PACKED see MPI Pack()

20

A few more things

The status object

Contains information about the communication (3 fields):

• MPI SOURCE: the id of the sender.

• MPI TAG: the tag of the message.

• MPI ERROR: the error code

The status object has to be allocated by the user.

• But its value is assigned by the MPI Recv() function.

Wildcards for receptions

• MPI ANY SOURCE: receive from any source

• MPI ANY TAG: receive with any tag

21

About wildcards

• Wildcards should be avoided when they are not strictly needed

▶ Specifying explicitly the message that is supposed to be
received allows avoiding/detecting bugs.

• There are some cases where wildcards can be useful:
▶ The programmer is unable to determine before execution time

from which rank a process is going to receive data
▶ A process is supposed to receive data with different tags

without a predefined order.

22

Agenda

Message Passing Systems

Introduction to MPI

Point-to-point communication

Collective communication

Other features

23

Blocking communication

MPI Send() and MPI Recv() are blocking communication
primitives.

• MPI Send() corresponds to the standard communication
mode1

What does blocking means in this context?

• Blocking send: When the call returns, it is safe to reuse the
buffer containing the data to send.
▶ It does not mean that the data has been transferred to the

receiver.
▶ It might only be that a local copy of the data has been made
▶ It may complete before the corresponding receive has been

posted

• Blocking recv: When the call returns, the received data are
available in the buffer.

1See additional slides for the description of other modes
24

Blocking communication

MPI Send() and MPI Recv() are blocking communication
primitives.

• MPI Send() corresponds to the standard communication
mode1

What does blocking means in this context?

• Blocking send: When the call returns, it is safe to reuse the
buffer containing the data to send.
▶ It does not mean that the data has been transferred to the

receiver.
▶ It might only be that a local copy of the data has been made
▶ It may complete before the corresponding receive has been

posted

• Blocking recv: When the call returns, the received data are
available in the buffer.

1See additional slides for the description of other modes
24

Protocols for standard mode
A taste of the implementation

MPI libraries implement several protocols for point-to-point
communication

• The protocol used for each communication is chosen based on
different parameters
▶ The main parameter is the message size

Two of the main protocols are:

• The Eager protocol (for small messages)

• The Rendezvous protocol (for large messages)

25

Eager protocol

• Data sent assuming receiver can store it

• The receiver may not have posted the corresponding reception
• This solution is used only for small messages (typically
< 64kB)
▶ This solution has low synchronization delays
▶ It may require an extra message copy on destination side

p0

p1

d mpi send(d,1)

d

mpi recv(buf,0) d

26

Rendezvous protocol

• Message is not sent until the receiver is ready
• Protocol used for large messages

▶ Higher synchronization cost
▶ If the message is big, it should be buffered on sender side.

p0

p1

ddd mpi send(ddd,1)

rdv

mpi recv(buf,0)

ok

ddd

27

Non blocking communication

Basic idea: dividing communication into two logical steps

• Posting a request: Informing the library of an operation to be
performed

• Checking for completion: Verifying whether the action
corresponding to the request is done

Posting a request

• Non-blocking send: MPI Isend()

• Non-blocking recv: MPI Irecv()

• They return a MPI Request to be used to check for
completion

28

Non blocking communication

Checking request completion

• Testing if the request is completed : MPI Test()
▶ Returns true or false depending if the request is completed

• Other versions to test several requests at once (suffix any,
some, all)

Waiting for request completion

• Waiting until the request is completed : MPI Wait()

• Other versions to wait for several requests at once (suffix
any, some, all)

29

Overlapping communication and computation

Non-blocking communication primitives allow trying to overlap
communication and computation

• Better performance if the two occur in parallel

MPI_Isend(..., req);

...

/* run some computation */

...

MPI_Wait(req);

However, things are not that simple:
• MPI libraries are not multi-threaded (by default)

▶ The only thread is the application thread (no progress thread)

• The only way to get overlapping is through specialized
hardware
▶ The network card has to be able to manage the data transfer

alone

30

Matching incoming messages and reception requests

MPI communication channels are First-in-First-out (FIFO)

• Note however that a communication channel is defined in the
context of a communicator

Matching rules

• When the reception request is named (source and tag
defined), it is matched with the next arriving message from
the source with correct tag.

• When the reception request is anonymous (MPI ANY SOURCE),
it is matched with next message from any process in the
communicator
▶ Note that the matching is done when the envelope of the

message arrives.
▶ The message size is not taken into account for the matching

31

Discussion about performance of P2P communication

Things to have in mind to get good communication performance:

• Avoid extra copies of messages (notion of zero-copy)
▶ Reception requests should be posted before corresponding send

requests
▶ Using non-blocking recv can help

• Reduce synchronization delays
▶ Same solution as before

• Take into account the topology of the underlying network
▶ Contention can have a dramatic impact on performance
▶ Beyond the scope of this lecture

32

Agenda

Message Passing Systems

Introduction to MPI

Point-to-point communication

Collective communication

Other features

33

Collective communication

A collective operation involves all the processes of a communicator.

All the classic operations are defined in MPI:

• Barrier (global synchronization)

• Broadcast (one-to-all)

• Scatter/ gather

• Allgather (gather + all members receive the result)

• AllToAll

• Reduce, AllReduce (Example of op: sum, max, min)

• etc.

There are v versions of some collectives (Gatherv, Scatterv,
Allgatherv, Alltoallv):

• They allow using a vector of send or recv buffers.

34

Example with broadcast

Signature

int MPI_Bcast(void *buffer,

int count, MPI_Datatype datatype,

int root, MPI_Comm comm);

Broadcast Hello

#include <mpi.h>

int main(int argc, char *argv[])

{

char msg[20];

int my_rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == 0)

strcpy(msg, "Hello␣from␣0!");

MPI_Bcast(msg, 20, MPI_CHAR, 0, MPI_COMM_WORLD);

printf("rank␣%d:␣I␣received␣%s\n", my_rank, msg);

MPI_Finalize();

}

35

About collectives and synchronization

What the standard says

A collective communication call may, or may not, have the effect
of synchronizing all calling processes.

• It cannot be assumed that collectives synchronize processes
▶ Synchronizing here means that no process would complete the

collective operation until the last one entered the collective
▶ MPI Barrier() still synchronize the processes in all cases

• Why is synchronization useful?
▶ Ensure correct message matching when using anonymous

receptions
▶ Avoid too many unexpected messages (where the reception

request is not yet posted)

36

About collectives and synchronization

What about real life?
• In most libraries, collectives imply a synchronization

▶ Because implementing a version without synchronization is
costlier

• A user program that assumes no synchronization is erroneous

Incorrect code (High risk of deadlock)

if(my_rank == 1)

MPI_Recv(0);

MPI_Bcast(...);

if(my_rank == 0)

MPI_Send(1);

37

Implementation of collectives

• MPI libraries implement several algorithms for each collective
operation

• Different criteria are used to select the best one for a call,
taking into account:
▶ The number of processes involved
▶ The size of the message

• A supercomputer may have its own custom MPI library
▶ Take into account the physical network to optimize collectives

38

Agenda

Message Passing Systems

Introduction to MPI

Point-to-point communication

Collective communication

Other features

39

Derived datatypes

We have already introduced the basic datatypes defined by MPI

• They allow sending contiguous blocks of data of one type

Sometimes one will want to:

• Send non-contiguous data (a sub-block of a matrix)

• Buffers containing different datatypes (an integer count,
followed by a sequence of real numbers)

One can defined derived datatypes

40

Derived datatypes

• A derived datatype is defined based on a type-map
▶ A type-map is a sequence of pairs {dtype, displacement}
▶ The displacement is an address shift relative to the basic

address

Committing types

• MPI Type commit()
▶ Commits the definition of the new datatype
▶ A datatype has to be committed before it can be used in a

communication

• MPI Type free()
▶ Mark the datatype object for de-allocation

41

Data type: Contiguous

• int MPI Type contiguous(int count, MPI Datatype
oldtype, MPI Datatype *newtype)
▶ count is the number of elements concatenated to build the

new type.

count=10

newtype

oldtype

42

Data type: Vector

The vector type allows defining a set of blocks containing
multiple elements with an equal distance between the blocks.

• int MPI Type vector(int count, int blocklength,
int stride, MPI Datatype oldtype, MPI Datatype
*newtype)
▶ count is the number of blocks.
▶ blocklength is the number of elements in one block
▶ stride is the number of elements between the start of each

block

43

Data type: Vector

blocklength=3 stride=5

newtype
count=3

44

Exercise

Define the datatype that corresponds to a row and to a column:

• nb col: the number of columns

• nb row: the number of rows

• Matrix allocation:

int *matrix= malloc(nb_col * nb_row * sizeof(int));

Matrix stored in a row-contiguous manner.

45

Exercise

MPI_Datatype Col_Type, Row_Type;

MPI_Type_contiguous(nb_col, MPI_INT, &Row_Type);

MPI_Type_vector(nb_row, 1, nb_col, MPI_INT, &Col_Type);

MPI_Type_commit(&Row_Type);

MPI_Type_commit(&Col_Type);

...

MPI_Type_free(&Row_Type);

MPI_Type_free(&Col_Type);

46

Performance with derived datatypes

Derived datatypes should be used carefully:

• By default, the data are copied into a contiguous buffer before
being sent (no zero-copy)

• Special hardware support is required to avoid this extra copy

47

Operations on communicators

New communicators can be created by the user:

• Duplicating a communicator (MPI Comm dup())
▶ Same group of processes as the original communicator
▶ New communication context

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm);

• Splitting a communicator (MPI Comm split())

int MPI_Comm_split(MPI_Comm comm, int color, int key,

MPI_Comm *newcomm);

▶ Partitions the group associated with comm into disjoint
subgroups, one for each value of color.

▶ Each subgroup contains all processes of the same color.
▶ Within each subgroup, the processes are ranked in the order

defined by the value of the argument key.
▶ Useful when defining hierarchy of computation

48

F. Desprez - Luc Giraud 90

MPI_Comm_rank(MPI_COMM_WORLD, rank);
MPI_Comm_size(MPI_COMM_WORLD, size);
color = 2*rank/size;
key = size - rank - 1

MPI_Comm_split(MPI_COMM_WORLD, color, key, n_comm)

A
0

B
1

C
2

D
3

E
4

F
5

G
6

H
7

I
8

J
9

MPI_COMM_WORLD

N_COMM_1

E
0

D
1

C
2

B
3

A
4

N_COMM_2

J
0

I
1

H
2

G
3

F
4

Warning

The goal of this presentation is only to provide an overview of the
MPI interface.

Many more features are available, including:

• One-sided communication

• Non-blocking collectives

• Process management

• Inter-communicators

• etc.

MPI 3.1 standard is a 836-page document

49

References

• Many resources available on the Internet

• The man-pages

• The specification documents are available at:
http://mpi-forum.org/docs/

50

http://mpi-forum.org/docs/

Additional slides

51

Communication Mode ()

• Standard (MPI Send())
▶ The send may buffer the message locally or wait until a

corresponding reception is posted.

• Buffered (MPI BSend())
▶ Force buffering if no matching reception has been posted.

• Synchronous (MPI SSend())
▶ The send cannot complete until a matching receive has been

posted (the operation is not local)

• Ready (MPI RSend())
▶ The operation fails if the corresponding reception has not been

posted.
▶ Still, send may complete before reception is complete

In a vast majority of cases the standard MPI Send() is used.

52

	
	Message Passing Systems
	Introduction to MPI
	Point-to-point communication
	Collective communication
	Other features

