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This lecture introduces collective operations in distributed memory systems. It also presents
some major algorithms and techniques to achieve good performance for such operations.

1 Introduction

1.1 Positioning

In the previous lectures, we have studied parallel programming in shared memory systems, that
is, systems where all processing elements have access to a shared address space. In the following,
we will start studying the alternative distributed memory model. The distributed memory model
is often adopted when working with a system composed of multiple nodes connected through a
network. We refer you to the Lecture 3 (Parallel architectures and programming models) for a more
detailed comparison of the models.

1.2 Context

We consider a distributed memory system. Each processor (also called node in this context) has
access to a local private memory and communicates with the other nodes by exchanging messages
over a network.

Some communication and computational patterns are very common in parallel applications
executing on a distributed memory system. To achieve good performance, it is important to study
and optimize the performances for these patterns.

Some of these patterns involve groups of processors. In the parallel community, we name these
patterns collective operations. Message passing libraries for parallel programming, such as MPI (The
Message Passing Interface), provide implementations for the most common collective operations.
Hence, you will not have to implement them yourself. Still, it is important to study them: i) to
understand their semantic; ii) to analyze and understand some algorithms that allow achieving
performance at scale.

A significant difference between shared-memory and distributed-memory systems is the size.
Whereas a multi-core processor will in general include at best a few tens of processing units, dis-
tributed memory systems might include hundreds, thousands, or more processing units. As a
consequence, optimizing the performance of the synchronization/communication patterns between
the processing units is more central to the performance of these systems.
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2 Execution model

To design communication operations and analyze their performance, we first need to define an
execution model. The execution model defines the assumptions that are made about the underlying
hardware and software layers. The model should be at the same time simple (to allow reasoning
about it) and accurate enough to capture the main characteristics of the execution platform (and
so, to ensure that the designed algorithm will work well in practice).

Here is the model that we will consider in this course:

• Transferring a message M of size m over one link takes a time t = L+m/B.

– L is the latency (or delay): the time to transfer one word from the source to the desti-
nation. L is independent of the message size.

– B is the bandwidth: the rate at which words can be inserted on the network link.

• A store-and-forward model is assumed for intermediate nodes that transmit a message from
a source to a destination:

– A node receives the full message M before transmitting it to the next node.

• We assume full-duplex communication channels: data can transit in both directions at the
same time on a network link.

• Finally, we assume that a processor can send data, receive data, and perform computation on
local data at the same time.

This model is very simple but, still, it is able to capture major performance trends.

3 Collective operations

In this section, we introduce the main collective operations used in parallel systems. For the
description, we assume a set of n processors {P1, P2, . . . Pn}.

Broadcast

• One-to-all communication pattern

• One processor Pk sends a message to all processors.
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Figure 1: Broadcast
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Scatter

• One-to-all communication pattern

• One processor Pk has a vector of n data blocks.

• Each processor receives one of the blocks.

• All blocks have the same size and type.
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Figure 2: Scatter

Gather

• All-to-one communication pattern.

• Each processor has a block of data.

• A vector of blocks is constructed on one processor Pk. Block i in the vector in the block from
process Pi.

• All blocks have the same size and type.
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Figure 3: Gather

Reduce

• All-to-one communication pattern (also called accumulation)

• Same as gather but a reduction operation (
⊗

) is applied to accumulate the data blocks.
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Figure 4: Reduce

All-gather

• All-to-all communication pattern

• Same as Gather excepted that all processors receive the constructed vector.
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Figure 5: All-gather

All-reduce

• All-to-all communication pattern

• Same as Reduce excepted that all processors receive the computed block.
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Figure 6: All-reduce

All-to-all

• All-to-all communication pattern

• Initially each processor has a vector of n blocks where block i should be sent to processor Pi
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• After the operation, each processor has a vector of n blocks where block i was received from
processor Pi
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Figure 7: All-to-all

4 Implementation of collective operations

To design algorithms for collective operations, one first needs to decide about the underlying network
topology that is assumed. The network topology defines the distance in number of hops between
any two processors in the distributed system.

• A 1-hop distance corresponds to the case where there is a direct link between two processors.

• A n-hop distance corresponds to the case where there are n− 1 processors on the path from
the source to the destination.

One usually makes the distinction between the virtual and the physical network topology. The
physical topology corresponds to the way the physical network is built on the target platform. A
logical topology is an arbitrary topology that is used to reason about algorithms. An algorithm
designed for a given logical topology will, with a high probability, work better on physical topologies
that closely match the considered logical one.

In this section, we consider a logical topology that corresponds to a fully connected network:
each node has a direct connection with every other nodes in the system. Such a topology allows
reasoning about the theoretically most efficient algorithms.

The efficiency of collective operations can be evaluated according to two metrics: the latency
and the throughput:

• The latency is the time from when the collective operation is initiated until when it is com-
pleted on all processes.

• The throughput (or effective bandwidth) is the amount of data that can be processed by the
collective operation per time unit.

In the following, we are going to study 2 operations: broadcast and all-gather. By studying
these two operations, we can illustrate some major strategies for scalable collective operations.
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4.1 Broadcast

A simple (naive) algorithm for the broadcast algorithm is the following one: The source node sends
the message to all destinations.

Let’s compute the time taken for this algorithm to transmit a message of size m, assuming a
system with n nodes:

Tbcast(m) = (n− 1)× (L+
m

B
)

As we can see, this algorithm is good neither from latency nor from throughput point of view.
Indeed, both the latency and the throughput terms are proportionals to the number of nodes.

Another algorithm based on a binomial tree is optimal from latency point of view for power-of-
two number of processes. The binomial tree algorithm is described by the figure bellow. The figure
assumes that processor P1 is the source.

P1 P2 P3 P4 P5 P6 P7 P8

Step 1

Step 2

Step 3

Figure 8: Binomial tree (broadcast from node P1)

The algorithm is designed so that the number of senders is multiplied by 2 at every step of the
algorithm. We can compute the performance of this new algorithm.

Tbcast(m) = log(n)× (L+
m

B
)

This new algorithm scales much better as its execution time is proportional to the logarithm
of the number of nodes involved in the communication. This algorithm is actually optimal from
latency point of view. From throughput point of view, a better performance can be achieve by an
algorithm proposed by Van de Geijn et al. This algorithm starts by running a scatter operation
followed by a all-gather operation. A detailed discussion about this algorithm goes beyond the scope
of this lecture.

4.2 All-gather

The all-gather operation is a collective operation that constructs an array out of the contributed
block of each node, and where the result is shared between all nodes.

We study the all-gather operation because it allows applying a communication pattern called
recursive doubling. Recursive doubling (or the complementary recursive halving strategy) can be
used for the efficient implementation of several collective operations.
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The basic idea of the recursive doubling algorithm to implement the all-gather operation is
the following: i) at each step each processor exchange with another processor; ii) at each step the
distance of the processor to exchange with is multiplied by 2.

P1 P2 P3 P4 P5 P6 P7 P8

Step 1

Step 2

Step 3

Figure 9: Recursive doubling (to implement all-gather operation)

We can check with an example that the algorithm illustrated in Figure 9 works in practice. Let
us consider the processor P6:

• At step 1, P6 receives the block of P5.

• At step 2, P6 receives from P8 the blocks of P7 and P8.

• At step 3, P6 receives from P2 the blocks of P1, P2, P3 and P4.

Hence, after 3 execution steps, the processor has received all the blocks. Again, we obtain an
algorithm that scales well as it requires log(n) steps to complete. Computing the exact performance
of the algorithm goes beyond the scope of this lecture.

5 Collective operations on a unidirectional ring

In this section, we study a more constrained topology, namely a unidirectional ring of n processors.
As described in Figure 10, the unidirectional ring implies that a processor can only receive messages
from the preceding processor and send messages to the following processor in the ring.

With this topology, a broadcast operation with processor Pk as source node can be implemented
with the algorithm of Figure 11.

Note: We are going to study broadcast algorithms in a virtual ring in more details during the
tutorial session. Among other things, during the tutorial session, we will study how to specify
the algorithm assuming that 4 primitives are available to each processor: MY_NUM(), NUM_PROCS(),
SEND(m, id), and RECV(m, id).

Use of the virtual ring topology: Although algorithms built based on a virtual ring topology
suffer from a high latency, there are use-cases where they can be very efficient in practice. This is
especially the case when the number of processors involved in the communication is not a power of
two and when the message is large. Indeed, for large messages, the throughput is a more important
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Figure 10: Unidirectional ring

1 /* broadcast of msg M, source is processor Pk */
2 broadcast_ring(M, k){
3 if(my_id != k){
4 Receive M from processor (my_id -1) mod n
5 }
6
7 if (my_id != k-1 mod n){
8 Send M to processor (my_id +1) mod n
9 }

10 }

Figure 11: Broadcast in a unidirectional ring

metric than the latency. Still, note that ring-based algorithms do not scale well with very large
numbers of processors.

A domain where ring-based algorithms are used today is distributed deep learning. Distributed
deep learning algorithms heavily rely on the all-reduce collective operation, and run this operation
with large messages. Since distributed deep learning solutions use in general at most a few tens of
processors, ring-based algorithms can work efficiently.

Pipelining One can observe that in the ring-based broadcast algorithm presented above, there
is no parallelism in the data transfers. To increase the level of parallelism, one can split a large
message into small messages (called packets hereafter) and apply pipelining. Applying pipelining
works in the following way. Here, we assume that the source is processor P0:

• Step 1: The source processor P0 sends the first packet to processor P1;

• Step 2: P0 sends the second packet to P1 while P1 sends the first packet to P2

• Step 3: P0 sends the third packet to P1 while P1 sends the second packet to P2 and P2 sends
the first packet to P3.

• etc.
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Based on this description, it is obvious that the level of parallelism has increased. We can use
our performance model to better assess the improvement. For the ring-based broadcast algorithm,
the performance is the following:

Tbcast−ring(m) = (n− 1)× (L+
m

B
)

For the pipelined version of the ring-based algorithm, assuming that the message is split into r
packets, the performance is:

Tbcast−ring−pipelined(m) = (n+ r − 2)× (L+
m

r
× 1

B
)

This results is derived from two observations:

1. The time for the first packet to reach the last node in the ring is (n− 1)× (L+ m
r × 1

B )

2. After the first packet has arrived, we are still waiting for r − 1 packets.

Pipelining will be discussed in more details during the tutorial session.
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