
Parallel Algorithms and Programming
Introduction to OpenMP

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2023

1

mailto:thomas.ropars@univ-grenoble-alpes.fr


Agenda

Introduction

OpenMP basics: parallelizing for loops

OpenMP tasks

2



Agenda

Introduction

OpenMP basics: parallelizing for loops

OpenMP tasks

3



References

The content of these lectures is inspired by:

• The lecture notes of F. Desprez.
• The presentation of F. Broquedis:

▶ http://smai.emath.fr/cemracs/cemracs16/images/

FBroquedis.pdf
▶ A large number of slides are directly borrowed from this

presentation

• OpenMP tutorial at LLNL:
https://computing.llnl.gov/tutorials/openMP/

4

http://smai.emath.fr/cemracs/cemracs16/images/FBroquedis.pdf
http://smai.emath.fr/cemracs/cemracs16/images/FBroquedis.pdf
https://computing.llnl.gov/tutorials/openMP/


What is OpenMP?

• A de-facto standard API to write shared memory parallel
applications in C, C++ and Fortran
▶ Supported by the main compilers

• Consists of:
▶ compiler directives
▶ runtime routines
▶ environment variables

• Specification maintained by the OpenMP Architecture Review
Board (http://www.openmp.org)

5

http://www.openmp.org


Advantages of OpenMP

• A mature standard
▶ Speeding-up your applications since 1998

• Portable
▶ Supported by many compilers, ported on many architectures

• Allows incremental parallelization
• Imposes low to no overhead on the sequential execution of the
program
▶ Just tell your compiler to ignore the OpenMP pragmas and

you get back to your sequential program

• Supported by a wide and active community
▶ The specifications have been moving fast in the recent years to

support :
• new kinds of parallelism (tasking)
• new kinds of architectures (accelerators)

6



Parallelizing a program with OpenMP

The main steps

• The programmer inserts pragmas to tell the compiler how to
parallelize the code

• The code is compiled with the appropriate flags
▶ -fopenmp for gcc
▶ The compiler makes the required code transformations and

library calls

• The generated executable can be run as it.
▶ The execution can be customized by defining environment

variables
• Number of threads
• Scheduling policy

▶ The runtime library is in charge of scheduling the work to be
done and synchronizing the threads

7



Parallelizing a program with OpenMP

int main(void)
{

...

for(int i=0; i<N; i++){
...

}

return 0;
}

Original code

int main(void)
{

...
#pragma omp parallel for
for(int i=0; i<N; i++){

...
}

return 0;
}

Modified code

Add OpenMP
pragmas

gcc -fopenmp ...

Generate OpenMP executable

Compile
Execution managed by the
OpenMP library:

• Creates and manages
threads

• Assign tasks to threads

• etc.

Parallel execution

Exec

8



OpenMP vs pthreads

Pthreads
• Low-level API

• The programmer has the flexibility to do whatever he wants

OpenMP

• Often we just want to:
▶ Parallelize one loop
▶ Hand-off a piece of computation to another thread

• OpenMP allows doing this easily
▶ One can sometimes get a huge speed-up by modifying a single

line in the source code
▶ The use of pragmas is not always easy

• It can be challenging to figure out what the compiler is going
to do exactly

9



Why we need OpenMP
Case of loop parallelization

The compiler may not be able to do the parallelization fully
automatically in the way you would like to see it:

• It cannot find parallelism
▶ The data dependence analysis is not able to determine whether

it is safe to parallelize or not

• The granularity is not appropriate
▶ The compiler lacks information to parallelize at the highest

possible level

This is where explicit parallelization through OpenMP directives
comes into the picture

10



Agenda

Introduction

OpenMP basics: parallelizing for loops

OpenMP tasks

11



A fork-join execution model

• Initially a single initial thread1 executes the main function of
the program.

• A team of threads is used to execute a parallel region

• The number of threads and the number of parallel regions can
be arbitrary large

1Used to be called master thread
12



A fork-join execution model

int main(void)

{

some_statements();

#pragma omp parallel

{

printf("Hello,␣world!\n");

}

other_statements();

#pragma omp parallel

{

printf("Bye\n");

}

return EXIT_SUCCESS;

}

• Entering a parallel region creates
a team of threads that will
execute the region
▶ Tasks are created to be

executed in parallel
• If no further directives, all

tasks correspond to the
code of the parallel region

• Any statement declared outside
parallel regions is executed
sequentially

13



More on parallel regions

Some comments
• Entering a parallel region might imply the creation of new
threads
▶ Many OpenMP libraries rely on a thread pool to avoid

re-creating threads for every parallel region

• Nested parallel regions are allowed
▶ = a parallel region inside a parallel region
▶ Depending on the library and the activated options, new

threads might be used to executed the nested regions

• An implicit barrier occurs at the end of the parallel region

14



The OpenMP memory model

• All threads have access to the same, globally shared, memory

• Data can be shared or private:
▶ Shared data are accessible by all threads
▶ Private data can only be accessed by the thread that owns it
▶ The programmer is responsible for providing the corresponding

data-sharing attributes

• By default, no synchronization mechanisms are used to
synchronize access to shared variables

15



Data-sharing Attributes
https:

//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

(p282)

The visibility of each variable that appears inside a parallel region
should be set using data-sharing attributes :

• shared: The data can be read and written by any thread of
the team. All changes are visible to all threads.

• private: Each thread is working on its own version of the data
that cannot be accessed by other threads of the team. The
variable is uninitialized at the beginning of the parallel region.

• firstprivate: The variable is private. It is initialized using the
value it had before entering the parallel region.

• lastprivate: The variable is private. At the end of the parallel
region, the variable has the same value as in the last iteration
of the sequential code.

16

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf


Data-sharing Attributes
https:

//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

(p270)

If the visibility of a variable is not explicitly set, the compiler infers
a default visibility for variables:

• The visibility depends on the characteristics of variables, when
it is declared, how it is allocated, etc. Check the
documentation.

• Most variables are shared by default.

• Iterator variables of parallel loops are private.

17

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf


Putting Threads to Work: A Parallel Loop

void simple_loop(int N,

float *a,

float *b)

{

int i;

// i, N, a and b are shared by default

#pragma omp parallel firstprivate(N)

{

// i is private by default

#pragma omp for

for (i = 1; i <= N; i++) {

b[i] = (a[i] + a[i-1]) / 2.0;

}

}

}

• omp for : distribute
the iterations of a
loop over the threads
of the parallel region.

• Here, assigns N/P
iterations to each
thread, P being the
number of threads of
the parallel region.

• omp for comes with
an implicit barrier
synchronization at
the end of the loop.
Can be removed with
the nowait keyword.

18



The reduction clause
The reduction clause allows defining a combiner operation to be
applied on a variable:

• A private variable is created for each thread of the parallel
region

• At the end of the parallel region, the value of the variable for
each thread is combined to compute a single value

• Possible combiners include: ’+’, ’-’, ’*’, ’and’, ’or’, ’max’, etc.

int count_zeros(int N, float *a)

{

int i, count;

#pragma omp parallel for reduction(+:count)

for (i = 0; i < N; i++) {

if(a[i] == 0){

count++;

}

}

return count;

}

19



OpenMP Loop Schedulers: Definitions
The schedule clause of the for construct specifies the way loop
iterations are assigned to threads. The loop scheduler can be set
to one of the following :

• schedule(static, chunk size): assign fixed chunks of
iterations in a round robin fashion1.

• schedule(dynamic, chunk size): fixed chunks of iterations
are dynamically assigned to threads at runtime, depending on
the threads availability.

• schedule(guided, chunk size): like dynamic, but with a
chunk size that decreases over time (until reaching
chunk size)

• runtime: the loop scheduler is chosen at runtime thanks to
the OMP SCHEDULE environment variable.

1When no chunk size is specified, the iteration space is divided into chunks
that are approximately equal in size, and at most one chunk is distributed to
each thread. The size of the chunks is unspecified in this case.

20



OpenMP Loop Schedulers: Chunks
The chunk size attribute determines the granularity of iterations
chunks the loops schedulers are working with.

legend: thread0 thread1 thread2 thread3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure: static scheduler, 16 iterations, 4 threads, default chunk size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure: static scheduler, 16 iterations, 4 threads, chunk size=2

21



OpenMP Loop Schedulers
Example on 500 iterations, 4 threads1

Warning: The figure represents the assignment of iterations to
threads, not the execution over time.

1For a chunk size of k with guided scheduling, the size of each chunk is
proportional to the number of unassigned iterations divided by the number of
threads in the team, decreasing to k

22



An Example to Illustrate OpenMP Capabilities

Our job for today: parallelize this code using OpenMP

23



An Example to Illustrate OpenMP Capabilities

First create the parallel region and define the data-sharing
attributes

24



An Example to Illustrate OpenMP Capabilities

At this point, all the threads execute the whole program (you
won’t get any speed-up from this!)

25



An Example to Illustrate OpenMP Capabilities

Now distribute the loop iterations over the threads using omp for.

26



Optimization #1: Remove Unnecessary

Synchronizations

There are no dependencies between the two parallel loops, we
remove the implicit barrier between the two.

27



Optimization #2: Don’t Go Parallel if the

Workload is Small

We don’t want to pay the price of thread management if the
workload is too small to be computed in parallel.

28



Additional comments

Note that:
• The default(none) clause requires that each variable that is
referenced in the construct must have its data-sharing
attribute explicitly determined by being listed in a
data-sharing attribute clause.
▶ Reminder: If left unspecified, a variable declared outside of a

parallel region is shared by default.

• When no schedule kind is defined, the default scheduling
policy is applied.
▶ The default policy is implementation-dependent.

29



Agenda

Introduction

OpenMP basics: parallelizing for loops

OpenMP tasks

30



Extending the Scope of OpenMP with Task

Parallelism

omp for has made OpenMP popular and remains for most users
its central feature. But what if my application was not written in a
loop-based fashion?

int fib(int n) {

int i, j;

if (n < 2) {

return n;

} else {

i = fib(n - 1);

j = fib(n - 2);

return i + j;

}

}

f5

f4

f3

f2

f1 f0

f1

f2

f1 f0

f3

f2

f1 f0

f1

Figure: Call graph of fib(5)

31



Tasking in OpenMP

Basic concept

The OpenMP tasking concept : tasks generated by one OpenMP
thread can be executed by any of the threads of the parallel
region.

32



Basic Concept
• The application programmer
specifies regions of code to be
executed in a task with the
#pragma omp task construct

• All tasks can be executed
independently

• When any thread encounters a
task construct, a task is
generated

• Tasks are executed
asynchronously by any thread
of the parallel region

• Completion of the tasks can be
guaranteed using the taskwait
synchronization construct

int main(void) {

...

#pragma omp parallel

{

#pragma omp single

res = fib(50);

}

...

}

int fib(int n) {

int i, j;

if (n < 2) {

return n;

} else {

#pragma omp task

i = fib(n - 1);

#pragma omp task

j = fib(n - 2);

#pragma omp taskwait

return i + j;

}

}

33



Tasking in OpenMP: Execution Model

The Work-Stealing execution
model

• Each thread has its own task
queue

• Entering an omp task

construct pushes a task to
the thread’s local queue

• When a thread’s local queue
is empty, it steals tasks from
other queues

Tasks are well suited to
applications with irregular
workload.

34



Your Very First OpenMP Tasking Experience (1/5)

int main(void)

{

printf("A␣");

printf("race␣");

printf("car␣");

printf("\n");

return 0;

}

• We want to use OpenMP to make this
program print either "A race car" or
"A car race" using tasks.

Program output:
$ OMP NUM THREADS=2 ./task-1

$ A race car

35



Your Very First OpenMP Tasking Experience (2/5)

int main(void)

{

#pragma omp parallel

{

printf("A␣");

printf("race␣");

printf("car␣");

}

printf("\n");

return 0;

}

• We want to use OpenMP to make
this program print either "A race
car" or "A car race" using
tasks.

1. Create the threads that will
execute the tasks

Program output:
$ OMP NUM THREADS=2 ./task-2

$ A race A race car car

36



Your Very First OpenMP Tasking Experience (3/5)

int main(void)

{

#pragma omp parallel

{

#pragma omp single

{

printf("A␣");

#pragma omp task

printf("race␣");

#pragma omp task

printf("car␣");

}

}

printf("\n");

return 0;

}

• We want to use OpenMP to make
this program print either "A race

car" or "A car race" using
tasks.

1. Create the threads that will
execute the tasks

2. Create the tasks and make
one of the threads generate
them

Program output:
$ OMP NUM THREADS=2 ./task-3

$ A race car

$ OMP NUM THREADS=2 ./task-3

$ A car race

37



Your Very First OpenMP Tasking Experience (4/5)

int main(void)

{

#pragma omp parallel

{

#pragma omp single

{

printf("A␣");

#pragma omp task

printf("race␣");

#pragma omp task

printf("car␣");

printf("is␣fun␣");

printf("to␣watch␣");

}

}

printf("\n");

return 0;

}

• We would like to print "is fun

to watch" at the end of the
output string.

• Beware of the asynchronous
execution of tasks.

Program output:
$ OMP NUM THREADS=2 ./task-4

$ A is fun to watch race car

$ OMP NUM THREADS=2 ./task-4

$ A is fun to watch car race

38



Your Very First OpenMP Tasking Experience (4/5)

int main(void)

{

#pragma omp parallel

{

#pragma omp single

{

printf("A␣");

#pragma omp task

printf("race␣");

#pragma omp task

printf("car␣");

printf("is␣fun␣");

printf("to␣watch␣");

}

}

printf("\n");

return 0;

}

• We would like to print "is fun

to watch" at the end of the
output string.

• Beware of the asynchronous
execution of tasks.

Program output:
$ OMP NUM THREADS=2 ./task-4

$ A is fun to watch race car

$ OMP NUM THREADS=2 ./task-4

$ A is fun to watch car race

38



Your Very First OpenMP Tasking Experience (5/5)

int main(void)

{

#pragma omp parallel

{

#pragma omp single

{

printf("A␣");

#pragma omp task

printf("race␣");

#pragma omp task

printf("car␣");

#pragma omp taskwait

printf("is␣fun␣");

printf("to␣watch␣");

}

}

printf("\n");

return 0;

}

• We would like to print "is fun

to watch" at the end of the
output string.

• We explicitly wait for the
completion of the tasks with
taskwait

Program output:
$ OMP NUM THREADS=2 ./task-5

$ A race car is fun to watch

$ OMP NUM THREADS=2 ./task-5

$ A car race is fun to watch

39



What About Tasks with Dependencies on Other

Tasks?

void data_flow_example (void)

{

type x, y;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

write_data(&x); // Task A

#pragma omp task

write_data(&y); // Task B

#pragma omp taskwait

#pragma omp task

print_results(x); // Task C

#pragma omp task

print_results(y); // Task D

}

}

• Task A writes data that
will be processed by task
C. Same for task B and
task D.

• The taskwait construct
makes sure task C won’t
execute before task A
and D before B.

• Side effect: unnecessary
dependency between B
and C.
▶ C won’t execute until

B is over

40



What About Tasks with Dependencies on Other

Tasks?

void data_flow_example (void)

{

type x, y;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

write_data(&x); // Task A

#pragma omp task

write_data(&y); // Task B

#pragma omp taskwait

#pragma omp task

print_results(x); // Task C

#pragma omp task

print_results(y); // Task D

}

}

• Task A writes data that
will be processed by task
C. Same for task B and
task D.

• The taskwait construct
makes sure task C won’t
execute before task A
and D before B.

• Side effect: unnecessary
dependency between B
and C.
▶ C won’t execute until

B is over

40



OpenMP Tasks Dependencies

The depend clause provide information on the way a task will
access data, and thus, defines dependencies between tasks of a
parallel region.

Access mode
The depend clause is followed by an access mode that can be in,
out or inout.

41



OpenMP Tasks Dependencies

Examples

• depend(in: x, y, z): the task will read variables x, y and z

• depend(out: res): the task will write variable res, any previous
value of res will be ignored and overwritten

• depend(inout: k, buffer[0:n]): the task will both read and
write variable k and the content of n elements of buffer
starting from index 0

The OpenMP runtime system dynamically decides whether a
task is ready for execution or not considering its
dependencies.

42



OpenMP Tasks Dependencies : Some Trivial

Example

void data_flow_example (void)

{

type x, y;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out: x)

write_data(&x); // Task A

#pragma omp task depend(out: y)

write_data(&y); // Task B

#pragma omp task depend(in: x)

print_results(x); // Task C

#pragma omp task depend(in: y)

print_results(y); // Task D

}

}

• Task C can be executed
before task B, as long as
the execution of task A
is over.
▶ More potential

parallelism

43



Other OpenMP features

• Support for accelerators
▶ Ability to instruct the compiler and runtime to offload a block

of code to the device (for instance, a GPU)

• SIMD transformations

44


	
	Introduction
	OpenMP basics: parallelizing for loops
	OpenMP tasks


