Parallel Algorithms and Programming

Parallel algorithms in shared memory

Thomas Ropars

Email: thomas.ropars@univ-grenoble-alpes.fr

Website: tropars.github.io
References

The content of this lecture is inspired by:

- *Parallel algorithms* (Chapter 1) by H. Casanova, Y. Robert, A. Legrand.
- *Data Parallel Thinking* by K. Fatahalian
Outline

- The PRAM model
- Some shared-memory algorithms
- Analysis of PRAM models
Need for a model

A parallel algorithm

- Defines multiple operations to be executed in each step
- Includes communication/coordination between the processing units

The problem

- A wide variety of parallel architectures
 - Different number of processing units
 - Multiple network topologies

• How to reason about parallel algorithms?
• How to avoid designing algorithms that would work only for one architecture?

• A model can be used to abstract away some of the complexity
 - Should still capture enough details to predict with a reasonable accuracy how the algorithm will perform
A model for shared memory computation

The PRAM model

- Parallel RAM
- A shared central memory
- A set of processing units (PUs)
 - Any PU can access any memory location in one unit of time
- The number of PUs and the size of the memory is unbounded
Details about the PRAM model

Lock-step execution

- A 3-phase cycle:
 1. Read memory cells
 2. Run local computations
 3. Write to the shared memory
- All PUs execute these steps synchronously
 - No need for explicit synchronization

About concurrent accesses to memory: 3 PRAM models

- **CREW**: Concurrent Read, Exclusive Write
- **CRCW**: Concurrent Read, Concurrent Write
 - Semantic of concurrent writes?
- **EREW**: Exclusive Read, Exclusive Write
About the CRCW model

Semantic of concurrent writes:

- *Arbitrary mode*: Select one value from the concurrent writes
- *Priority mode*: Select the value of the PU with the lowest index
- *Fusion mode*: A commutative and associative operation is applied to the values (logical OR, AND, sum, maximum, etc.)

How powerful are the different models:

\[CRCW > CREW > EREW \]

A model is more powerful if there is one problem for which this model allows implementing a strictly faster solution with the same number of PUs
Some shared-memory algorithms
List ranking

Description of the problem

- A linked list of n objects
 - Doubly-linked list
- We want to compute the distance of each element to the end of the list

The sequential solution

- Iterate through the list from the end to the beginning
- Assign each element a distance from the last element while iterating

This solution has a complexity (execution time) in $O(n)$

Can we do better with a parallel algorithm?
List ranking

A solution based on pointer jumping

```python
# the list is stored in array *next*
# the distances are stored in array *d*
Ranking()
    forall i in parallel:        # initialization
        if next[i] is None:
            d[i] = 0
        else:
            d[i] = 1

    while there exists a node i such that next[i] != None:
        forall i in parallel do:
            if next[i] != None:
                d[i] = d[i] + d[next[i]]
                next[i] = next[next[i]]  # pointer jumping
```

This solution has an execution time in $O(\log n)$

- Note that the solution requires n PUs
- We note that the parallel version requires more work than the sequential version of the algorithm

Credit: *Parallel algorithms*, Casanova, Robert, Legrand.
Comments on the previous algorithm

Implementing pointer jumping

forall i in parallel:
 next[i] = next[next[i]]

- In practice, if all processors do not execute synchronously, next[next[i]] may be overwritten by another PU before it is read here.
- To make the algorithm safe in practice, we would have to implement:

forall i in parallel:
 temp[i] = next[next[i]]
forall i in parallel:
 next[i] = temp[i]
Comments on the previous algorithm

About the termination test

- Note that the test in the while loop can be done in constant time only in the CRCW model.
- The problem is about having all PUs sharing the result of their local test (next[i] != None).
- In a CW model, all PUs can write to the same variable and a fusion operation can be used.
- In a EW model, the results of the tests can only aggregated two-by-two leading to a solution with a complexity in $O(\log n)$ for this operation.
Point to root

Description of the problem

- A tree data structure
- Each node should get a pointer to the root

Use of pointer jumping

```python
PointToRoot(P):
    for k in 1..ceiling(log(sizeof(P))):
        forall i in parallel:
            P[i] = P[P[i]]
```

- We assume that we know `sizeof(P)`
Divide and conquer

- Split the problems into sub-problems that can be solved independently
- Merge the solutions

Example: Mergesort

```python
Mergesort(A):
    if sizeof(A) is 1:
        return A
    else:
        Do in parallel:
            L = Mergesort(A[0 .. sizeof(A)/2])
            R = Mergesort(A[sizeof(A)/2 .. sizeof(A)])
        Merge(L,R)
```

It is usually important to parallelize the divide and the merge step:
- In the algorithm above, the merge step is going to be the bottleneck
Analysis of PRAM models
Comparison of PRAM models

CRCW vs CREW

To compare CRCW and CREW, we consider a *reduce* operation over \(n \) elements with an associative operation.

- Example: the sum of \(n \) elements

 - With CRCW: \(O(1) \) steps
 - With CREW: \(O(\log n) \) steps
Comparison of PRAM models

CREW vs EREW

To compare CREW and EREW, we consider the problem of determining whether an element e belongs to a set $(e_1, \ldots e_n)$.

- **Solution with CREW:**
 - A boolean res is initialized to false and n PUs are used
 - PU k runs the test ($e_k \equiv e$)
 - If one PU finds e, it sets res to true

- **Solution with EREW:**
 - Same algorithm except e cannot be read simultaneously by multiple PUs
 - n copies of e should be created (broadcast)

- With CREW: $O(1)$ steps
- With EREW: $O(\log n)$ steps
Limits of the PRAM model

- Unrealistic memory model
 - Constant time access for all memory location

- Synchronous execution
 - Removes some flexibility

- Unlimited amount of resources
 - Might not allow devising an algorithm that works well on a real system
Study of Parallel scans
Scans (Prefix sums)

Description of the problem

- Inputs:
 - A sequence of elements $x_1, x_2 \ldots x_n$
 - A associative operation $*$

- Output:
 - A sequence of elements $y_1, y_2 \ldots y_n$ such that $y_k = x_1 * x_2 \ldots * x_k$

Solution applying the pointer jumping technique

```python
Scan(L):
    forall i in parallel: # initialization
        y[i] = x[i]

    for k in 1..ceiling(log(sizeof(L))):
        forall i in parallel:
            if next[i] != None:
                y[next[i]] = y[i] * y[next[i]]
                next[i] = next[next[i]]
```

Scans (Prefix sums)

Performance of this algorithm

- Work:

\[W(n) = O(n) \times \log(n) \]

- Depth:

\[D(n) = \log(n) \]

If we do not have \(n \) processing units in practice, the large value of \(n \) can be an issue for performance.

For instance, what would be a good algorithm on two processing units?
Parallel scan with 2 processing units

Solution

```plaintext
Scan(L):
# input: x; output: y
# first phase
half = sizeof(L)/2
for i in 0..1 in parallel
  SequentialScan(x[half*i .. half*(i+1)-1])

# second phase
base = y[half]
quarter = half / 2
for i in 0..1 in parallel
  add base to elems in y[half+quarter*i .. half+quarter*(i+1)-1]
```

Performance of this algorithm

- Work: \(W(n) = O(n) \)
- Depth: \(D(n) = O(n) \)
- It will perform better in practice due to the reduced amount of work
- Improves the locality of the data accesses (good for prefetchers)

Credit: Lecture -- Data parallel thinking, Fatahalian.
Performance comparison

Assumptions for the computation

- Read 2 elements, compute the sum, and write back the result in 1 step
- Array of 1000 elements

Execution time as a function of the number of PUs

The algorithm with a larger depth and less work per iteration performs better up to 16 PUs