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Need for a model
A parallel algorithm

De�nes multiple operations to be executed in each step
Includes communication/coordination between the processing units

The problem
A wide variety of parallel architectures

Di�erent number of processing units
Multiple network topologies

 

How to reason about parallel algorithms?
How to avoid designing algorithms that would work only for one
architecture?

A model can be used to abstract away some of the complexity
Should still capture enough details to predict with a reasonable
accuracy how the algorithm will perform
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A model for shared memory
computation
The PRAM model
 

Parallel RAM
A shared central memory
A set of processing units (PUs)

Any PU can access any memory location in one unit of time
The number of PUs and the size of the memory is unbounded
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Details about the PRAM model
Lock-step execution

A 3-phase cycle:
1. Read memory cells
2. Run local computations
3. Write to the shared memory

All PUs execute these steps synchronously
No need for explicit synchronization

About concurrent accesses to memory: 3 PRAM models
CREW: Concurrent Read, Exclusive Write
CRCW: Concurrent Read, Concurrent Write

Semantic of concurrent writes?
EREW: Exclusive Read, Exclusive Write
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About the CRCW model
Semantic of concurrent writes:

Arbitrary mode : Select one value from the concurrent writes
Priority mode : Select the value of the PU with the lowest index
Fusion mode : A commutative and associative operation is applied to the
values (logical OR, AND, sum, maximum, etc.)

 

How powerful are the di�erent models:

A model is more powerful if there is one problem for which this model
allows implementing a strictly faster solution with the same number of PUs

CRCW > CREW > EREW
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Some shared-memory
algorithms
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List ranking
Description of the problem

A linked list of n objects
Doubly-linked list

We want to compute the distance of each element to the end of the list

 

The sequential solution
Iterate through the list from the end to the beginning
Assign each element a distance from the last element while iterating

This solution has a complexity (execution time) in 

Can we do better with a parallel algorithm?

O(n)
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List ranking

A solution based on pointer jumping

# the list is stored in array *next*
# the distances are stored in array *d*
Ranking() 
    forall i in parallel:           # initialization
        if next[i] is None:
            d[i] = 0 
        else: 
            d[i] = 1

    while there exists a node i such that next[i] != None:
        forall i in parallel do:
            if next[i] != None:
                d[i] = d[i] + d[next[i]]
                next[i] = next[next[i]] # pointer jumping

This solution has an execution time in 

Note that the solution requires n PUs
We note that the parallel version requires more work than the sequential
version of the algorithm

O(logn)

Credit: Parallel algorithms, Casanova, Robert, Legrand. 10



Comments on the previous algorithm
Implementing pointer jumping

forall i in parallel:
    next[i] = next[next[i]]

In practice, if all processors do not execute synchronously,
next[next[i]] may be overwritten by another PU before it is read here.

To make the algorithm safe in practice, we would have to implement:

forall i in parallel:
    temp[i] = next[next[i]]
forall i in parallel:
    next[i] = temp[i]
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Comments on the previous algorithm
About the termination test

Note that the test in the while loop can be done in constant time only
in the CRCW model

The problem is about having all PUs sharing the result of their local test
(next[i] != None)

In a CW model, all PUs can write to the same variable and a fusion
operation can be used

In a EW model, the results of the tests can only aggregated two-by-two
leading to a solution with a complexity in  for this operationO(logn)
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Point to root
Description of the problem

A tree data structure
Each node should get a pointer to the root

 

Use of pointer jumping

PointToRoot(P):
    for k in 1..ceiling(log(sizeof(P))):
        forall i in parallel:
            P[i] = P[P[i]]

We assume that we know sizeof(P)
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Divide and conquer
Split the problems into sub-problems that can be solved independently

Merge the solutions

Example: Mergesort

Mergesort(A):
    if sizeof(A) is 1:
        return A
    else:
        Do in parallel:
            L = Mergesort(A[0 .. sizeof(A)/2])
            R = Mergesort(A[sizeof(A)/2 .. sizeof(A)])
        Merge(L,R)

It is usually important to parallelize the divide and the merge step:
In the algorithm above, the merge step is going to be the bottleneck
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Analysis of PRAM models
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Comparison of PRAM models
CRCW vs CREW
To compare CRCW and CREW, we consider a reduce operation over n
elements with an associative operation.

Example: the sum of n elements

With CRCW:  steps
With CREW:  steps

O(1)
O(logn)
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Comparison of PRAM models
CREW vs EREW
To compare CREW and EREW, we consider the problem of determining
whether an element e belongs to a set .

Solution with CREW:
A boolean res is initialized to false and n PUs are used
PU k runs the test ( )
If one PU �nds e, it sets res to true

Solution with EREW:
Same algorithm except e cannot be read simultaneously by multiple
PUs
n copies of e should be created (broadcast)

With CREW:  steps
With EREW:  steps

( , . . . )e1 en

== eek

O(1)
O(logn)
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Limits of the PRAM model
Unrealistic memory model

Constant time access for all memory location

 
Synchronous execution

Removes some �exibility

 
Unlimited amount of resources

Might not allow devising an algorithm that works well on a real
system
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Study of Parallel scans
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Scans (Pre�x sums)
Description of the problem

Inputs:
A sequence of elements 
A associative operation *

Output:
A sequence of elements  such that 

Solution applying the pointer jumping technique

Scan(L):
    forall i in parallel:     # initialization
        y[i] = x[i]

    for k in 1..ceiling(log(sizeof(L))):
        forall i in parallel:
            if next[i] != None:
                y[next[i]] = y[i] * y[next[i]]
                next[i] = next[next[i]]

, . . .x1 x2 xn

, . . .y1 y2 yn = ∗ . . .∗yk x1 x2 xk
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Scans (Pre�x sums)
Performance of this algorithm

Work:

Depth:

If we do not have n processing units in practice, the large value of n
can be an issue for performance

 

For instance, what would be a good algorithm on two processing
units?

W(n) = O(n) × log(n)

D(n) = log(n)
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Parallel scan with 2 processing units
Solution

Scan(L):
    # input: x; output: y
    # first phase
    half = sizeof(L)/2
    for i in 0..1 in parallel
        SequentialScan(x[half*i .. half*(i+1)-1])

    # second phase
    base = y[half]
    quarter = half / 2
    for i in 0..1 in parallel
        add base to elems in y[half+quarter*i .. half+quarter*(i+1)-1]

Performance of this algorithm
Work: W(n) = O(n)
Depth: D(n) = O(n)
It will perform better in practice due to the reduced amount of work
Improves the locality of the data accesses (good for prefetchers)

Credit: Lecture -- Data parallel thinking, Fatahalian. 22



Performance comparison
Assumptions for the computation

Read 2 elements, compute the sum, and write back the result in 1 step
Array of 1000 elements

Execution time as a function of the number of PUs

The algorithm with a larger depth and less work per iteration
performs better up to 16 PUs 23


