Parallel Algorithms and Programming

Parallel architectures and programming models

Thomas Ropars
Email: thomas.ropars@univ-grenoble-alpes.fr

Website: tropars.github.io

mailto:thomas.ropars@univ-grenoble-alpes.fr
https://tropars.github.io/

In this lecture

e Architecture of parallel computers
= Flynn's taxonomy

* Programming models and communication abstraction
= Shared memory
= Message passing
= Data parallel

References

The content of this lecture is inspired by:

* The lecture notes of F. Desprez
e |ntroduction to Parallel Computing by B. Barney
* The lecture notes of K. Fatahalian
m (CS149: Parallel Computing @Standford
= 15418: Parallel Computer Architecture and Programming @CMU
e Parallel Programming - For Multicore and Cluster System. T. Rauber, G. RUnger
* The lecture nodes of S. Lantz

https://computing.llnl.gov/tutorials/parallel_comp/
http://35.227.169.186/cs149/winter19/
http://15418.courses.cs.cmu.edu/spring2017/

Architecture of parallel
computers

Classification of parallel computers

Flynn's Taxonomy

* Proposed by Michael J. Flynn in 1966
e QOverview of the design space of parallel computers
e (Characterization according to the data flow and the control flow

s1ngle Multiple
Instruction Instruction
Stream Stream

s1ngle
Data o
Stream
Multiple 3
Data
Stream

Single-Instruction, Single-Data

* One processing element
* |t has access to a single program and a single data source

SISD Instruction Pool Implementation

PU |+

Data Pool

Single-Instruction, Single-Data

* One processing element
* |t has access to a single program and a single data source

SISD Instruction Pool Implementation

 Simple processor with no parallelism

Data Pool
ALY
-

Multiple-Instructions, Single-Data

 Multiple processing elements
 Each one executes a different program on the same data

MISD Instruction Pool |mp|ementation

Data Pool
I
v
—
C
T
=
C
T

 Multiple processing elements

Multiple-Instructions, Single-Data

 Each one executes a different program on the same data

MISD

Instruction Pool

PU|— L|PU|—

Data Pool
I

Implementation

* Not avery common use case
e Security and fault tolerance
= Hardware replication
= Very high availability and safety requirements

* Majority voting where each processing unit executes a
different algorithm

= Triple Modular redundancy
e Space shuttles and planes
= Boeing /77

Single-Instruction, Multiple-Data

e Multiple processing elements
* Each one works on its own data
= The physical memory might be shared

e All execute the same instruction at the same time

SIMD Instruction Pool Implementation
> PU [«
E > PU [+
8
av]
A /| PU |«
> PU |+

Single-Instruction, Multiple-Data

e Multiple processing elements
* Each one works on its own data
= The physical memory might be shared

e All execute the same instruction at the same time

SIMD Instruction Pool |mp|ementation

*|PU | e Operations on vectors and matrices
— e CPU
oy *(PU | m Dedicated instructions
S
= = Example: SSE and AVX vector operation
= "|PU [extensions on Intel

e Basic architecture of GPUs
> PU <

Single-Instruction, Multiple-Data

About vector operations

add VC,VA, VB

o SIMD registers can store multiple operands
e With AVX2 (latest Advanced Vector Extensions)
= 512-bits registers (= 8 64-bit double-precision floating-point numbers)

Performance of SIMD

A classic processor pipeline

1. Fetch: fetch the next instruction to be executed from memory

2. Decode: Decode the fetched instruction
3. Execute: Load the operands and execute the instruction

4. Write-back: Write back the result into a register

Advantages of SIMD -

e Amortize the cost and the complexity of managing Execution Context

instruction streams for multiple ALUS

e Same instruction broadcast to all ALUs
Decode

o]][] [
o]][] [

Credit: K Fatahalian

Performance of SIMD

Limitations

* Adapted to very regular processing

The case of conditional branch

Performance of SIMD

ALUO ALU1 ALUZ ALU3

* Not all ALUs do useful work
* |nthis case, only 50% of peak performance

SIMD in practice

Instructions are generated by the compiler

e The compiler can find parallelism automatically by analyzing the dependencies between loops
= Difficult problem

* The programmer can explicitly ask for SIMD parallelism
= Using compiler intrinsics

e The programmer can give hints through annotations in a parallel programming language
= Parallel for loops

Multiple-Instruction, Multiple-Data

e Multiple processing elements
e Each one works on its own data

= The physical memory might be shared
e Each one executes its own instruction stream.

MIMD Instruction Fool

Implementation

—|PU| —|PU|—

—[PU[|pPU|—

Data Fool

—|PU|+ |PU|+

—|PU|— Ls|PU|—

Multiple-Instruction, Multiple-Data

e Multiple processing elements

e Each one works on its own data

= The physical memory might be shared

e Each one executes its own instruction stream.

MIMD

Instruction Fool

PU[— —|PU|~—

PU[=|PU|—

Data Fool

PU[—|PU|~

PU[L|PU|~—

Implementation

* Most parallel systems today

= Multi-core processors
= Cluster of commodity machines
= Supercomputers
* Note that many MIMD architectures include SIMD sub-components

Programming models

Programming models

3 programming models
What abstraction is offered to the programmer?

1. Shared memory
2. Message passing
3. Data parallelism

Two communication architecture
What is the communication interface offered by the hardware?

1. Shared memory
2. Message passing

Shared memory

Threads/processes communicate by running operations in a

shared address space?

QKOO

| | u r
‘.I' ..J ‘-. .|"
L] L u
N . L] I

4 ~« ﬁ' b

Shared address space

Shared memory

Communication

e ReacC

and write operations in the sharec

* Sync

address space

nronization primitives (locks, sema

Comments

ohores, etc.)

e Simplest way of parallelizing a sequential program

= All the communications are implicit

= Achieving good performance can be challenging

Most common hardware implementation

* A multicore processor with coherent shared memory

Message passing

Threads/processes communicate by *sending and receiving messages?*

Also called distributed memory system

Message passing

Communication

 Sending and receiving messages

Comments

e All communications are explicit
= More effort for the programmer
= Allow to better optimize performance
o Control on the data movements
o Better overlap between communication and computation

Most common hardware implementation

e A setof computers interconnected through a network

Programming model vs communication
abstraction

The programming model is independent of the underlying communication architecture.

In general, i1f the programming model corresponds to the underlying

communication abstraction, better performance are to be expected.

Programming model vs communication
abstraction

Adopting a programming model on top of a different communication

abstraction also has advantages

Message passing over shared memory

e Better control of the data movements than with shared memory
e Sending data is implemented by writing into a mailbox in shared memory

* Receiving data is implemented by reading in a mailbox
* Note that a shared memory system is ultimately a message passing system
= A network interconnects the processor cores and the memory controllers

Shared memory over message passing

e Simplified work for the programmer
e Distributed shared memory (Beyond the scope of this course)
= Shared memory abstraction implemented in software
= Partitioned Global Address Space (PGAS) adds the notion of locality

Hybrid architectures and applications

Parallel architectures

e A cluster of nodes each equipped with one or several multicore processors
= Shared memory inside a node
= Message passing between nodes

Hybrid applications

o Applications combining message passing and shared memory programming models
= Message passing: Processes execute on different nodes (MPI)
= Shared memory: Each process is composed of multiple threads (OpenMP)

Data parallelism

e A collection of data

e The programmer defines functions (transformation) to be applied on all the data
= MapReduce programming model

Transformation (Map)

 Defines a function to be applied on all elements independently

- ma,p(f)[a?o,...,fl?n: — [f(wO)aaf(xn)]

Aggregation (Reduce)

e Defines a function to be applied on all elements (with the same key)

. reduce(f) [3307 .o 73371] — [f(x()af(xla . wf(xn—l)xn)))]

reduce (+) [2,

Data parallelism

e Very popular approach to process large amount of data

= Hadoop MapReduce, Apache Spark, Apache Flink
o Allows expressing very simply some algorithms
= Other algorithms might be very difficult to program efficiently

Basic idea:

Reducing the flexibility on the operations that a programmer can run

o Allows implementing optimizations at the level of the middleware
* Avoids having to deal with many exceptions that can impair performance
e Allows implementing very efficient fault tolerance techniques

An example of data parallel program: wordcount

Description

Input: A set of lines including words

Output: A set of pairs < word, nb of occurrences >

Input

< "aaa bb ccc” >
< "aaa bb” >

An example of data parallel program: wordcount

map (value) : * each value = an 1input line *
foreach word value.split () :

emlt (word, 1)

reduce (key, values): * {word, collection of '1l'} *

result = 0
value values:
result += wvalue

emit (key, result) * -> {word, nb occurences} *

Implementation of data parallelism

e Data parallelism can be implemented on top of shared memory and message passing
communication systems

" |t usually targets message passing systems
= Scale-out systems

About programming models

* Programming models provide a way to think about the structure of parallel programs

* Trade-off between simplicity for the programmer and performance

= A high-level abstraction
o Easy to program
o Might be difficult to optimize for performance
= A low-level abstraction
o Harder to program
o The programer has a better control of what is happening

 Having well-defined abstractions help designers of hardware/compilers/runtimes to think
about optimizations that can improve the performance of parallel programs

Conclusion

e Complex design space with multiple levels of abstraction
= Architecture of parallel computers
= Models of parallel computation
= Programming models
= Communication abstraction

e Different programming models, all with advantages and drawbacks
= Shared memory
= Message passing
= Data parallelism

Additional slides

Models of parallel
applications

Models of parallel applications

Two mains ways of structuring a parallel application.

SPMD: Single program, multiple data

MPMD: Multiple programs, multiple data

Definition from the point of view of the programmer:

* The programmer sees her application as composed of multiple instruction streams:
® Processes/Threads/Tasks

= Single program means that all of them execute the same program
A SPMD application could (theoretically) be translated into a single stream of SIMD instructions.
* Most often, we will execute our programs on MIMD architectures

SPMD

o All threads/processes are executing the same program
= Most parallel applications are SPMD

= MPI (message passing), OpenMP (shared memory)
 They run computation on a different subset of the data
e They communicate via shared memory or message passing

MPMD

* Processes execute at least 2 different programs
» Master-worker (also called master-slave)
= Workflow of tasks

Master-worker

* Role of the master
= Assigning work to workers
= Coordinating the workers

Example of MPMD application

Image analysis workflow

e Assumes that uncompress, preprocess, etc. are implemented by different programs.

compressed | | compressed | | compressed | | compressed | | compressed
image #1 image #2 image #3 image #4 image #5

UNCOMpPress LINCOMpPress LINCOMPress UNCOMPress LUncompress

R A R A

preprocess preprocess preprocess preprocess preprocess
K d - -.-.MHH‘-.\, __-'"-l-..-...- .-....x'\-\.\. F .-..-.- -....\HH.\. _-'"-l-.-.....- -...-NH_ _."-..-.-.-.- B : 5,
| analyze | | analyze | | analyze | | analyze | | analyze |
-\.\.. .\..\.. ...-.-l-l-...- '\-_H.\.-. .-..-. .-_,' -\..\.H\..\..\.. ...-.-l-l-.._' '.\.hx..\- i .--.-._' "_\.H.\... ...-. .-.-.-'
display
stastistics

o~ Je, r— I VYAIISNRA I 7~1] 1

About message passing
and shared memory

The case of manycore processors

Manycore processors

Several processor architecture featuring a high number of cores have emerged:

e /2-core tilera processor

e 260-core Sunway processor
e 80-core Kalray processor

* etc.

All these architectures allow to communicate via message passing on the chip:

e Tilera also offers a coherent shared memory
* On other processors, not all cores have access to the same global coherent shared memory

Manycore processor

Tilera processor

4 W

3 LI
m._.._—..___..___.l

DDR2 Controller 2

CRRCK KRR R
o
_+__+_ ! __*_+_+_*_
¥_+__+I|{|_.|._|._|I*
L .,

H-N-N-N-N-N-N-N -
Al

4L <L <

DDR2 ControllerQ
DDR2 Controller3

Manycore processor

Sunway SW26010

.(— Merin Memary -:l _(: Ml

n Memary :‘J
|| 2 —
i i
! oG1 |
1 i
i !
| |
1 i
I |
i |
i |
| i I
| ;,
| : i
! | J
s
i |
: i -
i |
! i\ r
! LN e
/
!
I
/
i CPE chstar
i
1
1
L
LG 3

-
-
!
I
~
-
b
%
b
"
.

Shared memory vs message passing

Limits of coherent shared memory

e (Cost of maintaining coherence

* Coherence protocols are mostly based on broadcast protocols
= Scalability of such protocols ?
= Efficiency ? (performance and energy)

e Difficult to build a performance model of the system
= Many implicit interactions that are difficult to model

About message passing

e Control of the data movements

= Scalability and energy efficiency

= Performance

= |ncreases the determinism of the system
* No direct support for legacy applications

* About performance of message passing vs shared memory:

= [everaging hardware message passing for efficient thread synchronization by D. Petrovic
et al.

