
Parallel Algorithms and Programming

Parallel architectures and programming models

Thomas Ropars

Email:

Website:

thomas.ropars@univ-grenoble-alpes.fr

tropars.github.io

1 . 1

mailto:thomas.ropars@univ-grenoble-alpes.fr
https://tropars.github.io/

In this lecture

Architecture of parallel computers

Flynn's taxonomy

Programming models and communication abstraction

Shared memory

Message passing

Data parallel

2

References

The content of this lecture is inspired by:

The lecture notes of F. Desprez

 by B. Barney

The lecture notes of K. Fatahalian

Parallel Programming – For Multicore and Cluster System. T. Rauber, G. Rünger

The lecture nodes of S. Lantz

Introduction to Parallel Computing

CS149: Parallel Computing @Standford

15418: Parallel Computer Architecture and Programming @CMU

3

https://computing.llnl.gov/tutorials/parallel_comp/
http://35.227.169.186/cs149/winter19/
http://15418.courses.cs.cmu.edu/spring2017/

Architecture of parallel
computers

4

Classification of parallel computers

Flynn's Taxonomy
Proposed by Michael J. Flynn in 1966

Overview of the design space of parallel computers

Characterization according to the data �ow and the control �ow

5

Single-Instruction, Single-Data

One processing element

It has access to a single program and a single data source

Implementation

6

Single-Instruction, Single-Data

One processing element

It has access to a single program and a single data source

Implementation

Simple processor with no parallelism

6

Multiple-Instructions, Single-Data

Multiple processing elements

Each one executes a di�erent program on the same data

Implementation

7

Multiple-Instructions, Single-Data

Multiple processing elements

Each one executes a di�erent program on the same data

Implementation
Not a very common use case

Security and fault tolerance

Hardware replication

Very high availability and safety requirements

Majority voting where each processing unit executes a

di�erent algorithm

Triple Modular redundancy

Space shuttles and planes

Boeing 777

7

Single-Instruction, Multiple-Data

Multiple processing elements

Each one works on its own data

The physical memory might be shared

All execute the same instruction at the same time

Implementation

8

Single-Instruction, Multiple-Data

Multiple processing elements

Each one works on its own data

The physical memory might be shared

All execute the same instruction at the same time

Implementation

Operations on vectors and matrices

CPU

Dedicated instructions

Example: SSE and AVX vector operation

extensions on Intel

Basic architecture of GPUs

8

Single-Instruction, Multiple-Data

About vector operations

SIMD registers can store multiple operands

With AVX2 (latest Advanced Vector Extensions)

512-bits registers (= 8 64-bit double-precision �oating-point numbers)

9

Performance of SIMD

A classic processor pipeline
1. Fetch: fetch the next instruction to be executed from memory

2. Decode: Decode the fetched instruction

3. Execute: Load the operands and execute the instruction

4. Write-back: Write back the result into a register

Advantages of SIMD
Amortize the cost and the complexity of managing

instruction streams for multiple ALUs

Same instruction broadcast to all ALUs

Credit: K. Fatahalian

10

Performance of SIMD

Limitations
Adapted to very regular processing

The case of conditional branch

x = A[i];

if (x<0){

 y = x + K1;

 z = y * y;

}

else{

 y = x - K2;

 z = y;

}

11 . 1

Performance of SIMD

Not all ALUs do useful work

In this case, only 50% of peak performance

11 . 2

SIMD in practice

Instructions are generated by the compiler
The compiler can �nd parallelism automatically by analyzing the dependencies between loops

Di�cult problem

The programmer can explicitly ask for SIMD parallelism

Using compiler intrinsics

The programmer can give hints through annotations in a parallel programming language

Parallel for loops

12

Multiple-Instruction, Multiple-Data

Multiple processing elements

Each one works on its own data

The physical memory might be shared

Each one executes its own instruction stream.

Implementation

13

Multiple-Instruction, Multiple-Data

Multiple processing elements

Each one works on its own data

The physical memory might be shared

Each one executes its own instruction stream.

Implementation
Most parallel systems today

Multi-core processors

Cluster of commodity machines

Supercomputers

Note that many MIMD architectures include SIMD sub-components

13

Programming models

14

Programming models

3 programming models
What abstraction is o�ered to the programmer?

1. Shared memory

2. Message passing

3. Data parallelism

Two communication architecture
What is the communication interface o�ered by the hardware?

1. Shared memory

2. Message passing

15

Shared memory

Threads/processes communicate by running operations in a

shared address space

16

Shared memory

Communication
Read and write operations in the shared address space

Synchronization primitives (locks, semaphores, etc.)

Comments
Simplest way of parallelizing a sequential program

All the communications are implicit

Achieving good performance can be challenging

Most common hardware implementation
A multicore processor with coherent shared memory

17

Message passing

Also called distributed memory system

Threads/processes communicate by *sending and receiving messages*

18

Message passing

Communication
Sending and receiving messages

Comments
All communications are explicit

More e�ort for the programmer

Allow to better optimize performance

Control on the data movements

Better overlap between communication and computation

Most common hardware implementation
A set of computers interconnected through a network

19

Programming model vs communication
abstraction

The programming model is independent of the underlying communication architecture.

In general, if the programming model corresponds to the underlying

communication abstraction, better performance are to be expected.

20

Programming model vs communication
abstraction

Message passing over shared memory
Better control of the data movements than with shared memory

Sending data is implemented by writing into a mailbox in shared memory

Receiving data is implemented by reading in a mailbox

Note that a shared memory system is ultimately a message passing system

A network interconnects the processor cores and the memory controllers

Shared memory over message passing
Simpli�ed work for the programmer

Distributed shared memory (Beyond the scope of this course)

Shared memory abstraction implemented in software

Partitioned Global Address Space (PGAS) adds the notion of locality

Adopting a programming model on top of a different communication

abstraction also has advantages

21

Hybrid architectures and applications

Parallel architectures
A cluster of nodes each equipped with one or several multicore processors

Shared memory inside a node

Message passing between nodes

Hybrid applications
Applications combining message passing and shared memory programming models

Message passing: Processes execute on di�erent nodes (MPI)

Shared memory: Each process is composed of multiple threads (OpenMP)

22

Data parallelism

A collection of data

The programmer de�nes functions (transformation) to be applied on all the data

MapReduce programming model

Transformation (Map)
De�nes a function to be applied on all elements independently

Aggregation (Reduce)
De�nes a function to be applied on all elements (with the same key)

map(f)[, . . . ,] = [f(), . . . ,f()]x0 xn x0 xn

map(*2)[2, 4, 5]= [4, 8, 10]

reduce(f)[, . . . ,] = [f(,f(, . . . ,f(,)))]x0 xn x0 x1 xn−1 xn

reduce(+)[2, 4, 5]= 2 + (4 + 5) = 11

23

Data parallelism

Very popular approach to process large amount of data

Hadoop MapReduce, Apache Spark, Apache Flink

Allows expressing very simply some algorithms

Other algorithms might be very di�cult to program e�ciently

Basic idea:

Allows implementing optimizations at the level of the middleware

Avoids having to deal with many exceptions that can impair performance

Allows implementing very e�cient fault tolerance techniques

Reducing the flexibility on the operations that a programmer can run

24

An example of data parallel program: wordcount

Description

Input Output

Input: A set of lines including words

Output: A set of pairs < word, nb of occurrences >

< ”aaa bb ccc” >

< ”aaa bb” >

< ”aaa”, 2 >

< ”bb”, 2 >

< ”ccc”, 1 >

25 . 1

An example of data parallel program: wordcount

map(value): * each value = an input line *

 foreach word in value.split():

 emit(word, 1)

reduce(key, values): * {word, collection of '1'} *

 result = 0

 for value in values:

 result += value

 emit(key, result) * -> {word, nb occurences} *

25 . 2

Implementation of data parallelism

Data parallelism can be implemented on top of shared memory and message passing

communication systems

It usually targets message passing systems

Scale-out systems

26

About programming models

Programming models provide a way to think about the structure of parallel programs

Trade-o� between simplicity for the programmer and performance

A high-level abstraction

Easy to program

Might be di�cult to optimize for performance

A low-level abstraction

Harder to program

The programer has a better control of what is happening

Having well-de�ned abstractions help designers of hardware/compilers/runtimes to think

about optimizations that can improve the performance of parallel programs

27

Conclusion

Complex design space with multiple levels of abstraction

Architecture of parallel computers

Models of parallel computation

Programming models

Communication abstraction

Di�erent programming models, all with advantages and drawbacks

Shared memory

Message passing

Data parallelism

28

Additional slides

29

Models of parallel
applications

30

Models of parallel applications

Two mains ways of structuring a parallel application.

De�nition from the point of view of the programmer:

The programmer sees her application as composed of multiple instruction streams:

Processes/Threads/Tasks

Single program means that all of them execute the same program

A SPMD application could (theoretically) be translated into a single stream of SIMD instructions.

Most often, we will execute our programs on MIMD architectures

SPMD: Single program, multiple data

MPMD: Multiple programs, multiple data

31

SPMD

All threads/processes are executing the same program

Most parallel applications are SPMD

MPI (message passing), OpenMP (shared memory)

They run computation on a di�erent subset of the data

They communicate via shared memory or message passing

32

MPMD

Processes execute at least 2 di�erent programs

Master-worker (also called master-slave)

Work�ow of tasks

Master-worker
Role of the master

Assigning work to workers

Coordinating the workers

33

Example of MPMD application

Image analysis workflow
Assumes that uncompress, preprocess, etc. are implemented by di�erent programs.

Credit: EduWRENCH
34

About message passing
and shared memory
The case of manycore processors

35

Manycore processors

Several processor architecture featuring a high number of cores have emerged:

72-core tilera processor

260-core Sunway processor

80-core Kalray processor

etc.

All these architectures allow to communicate via message passing on the chip:

Tilera also o�ers a coherent shared memory

On other processors, not all cores have access to the same global coherent shared memory

36

Manycore processor

Tilera processor

37

Manycore processor

Sunway SW26010

38

Shared memory vs message passing

Limits of coherent shared memory
Cost of maintaining coherence

Coherence protocols are mostly based on broadcast protocols

Scalability of such protocols ?

E�ciency ? (performance and energy)

Di�cult to build a performance model of the system

Many implicit interactions that are di�cult to model

About message passing
Control of the data movements

Scalability and energy e�ciency

Performance

Increases the determinism of the system

No direct support for legacy applications

About performance of message passing vs shared memory:

Leveraging hardware message passing for e�cient thread synchronization by D. Petrovic

et al.

39

