
Parallel Algorithms and Programming

Performance and Challenges

Thomas Ropars

Email:

Website:

thomas.ropars@univ-grenoble-alpes.fr

tropars.github.io

1 . 1

mailto:thomas.ropars@univ-grenoble-alpes.fr
https://tropars.github.io/

In this lecture

Measuring performance of parallel programs

Beyond execution time

Challenges of parallel programming

100% e�ciency is not always achievable

2

References

The lecture notes of F. Desprez

The lecture notes of K. Fatahalian

The teaching material of the eduWRENCH project

CS149: Parallel Computing @Standford

15418: Parallel Computer Architecture and Programming @CMU

Pedagogic modules

3

http://35.227.169.186/cs149/winter19/
http://15418.courses.cs.cmu.edu/spring2017/
https://wrench.isi.edu/

Performance of parallel
programs

4

Execution time of non-interactive programs

Non-interactive programs
We consider programs whose main purpose is not to interact with a user

It implies that the execution time does not depend on the user activity

Simplify reasoning about performance

Execution time
Work: The amount of computation to be executed by a program

Compute speed: The amount of work that can be executed by the hardware per unit of time

Execution time =
Work

Compute Speed

5

Execution time of non-interactive programs

Non-interactive programs
We consider programs whose main purpose is not to interact with a user

It implies that the execution time does not depend on the user activity

Simplify reasoning about performance

Execution time
Work: The amount of computation to be executed by a program

Compute speed: The amount of work that can be executed by the hardware per unit of time

Execution time =
Work

Compute Speed

How to measure Work and Compute Speed?

5

Measuring the Work (FLOP)

Multiple possible ways of measuring the work
Application speci�c (can be high level)

Number of images to process

Number of items to sort

etc.

At the level of instructions

Number of instructions to execute

Problems:

All instructions do not have the same cost

Not all instructions are useful (for the �nal result)

Floating-point operations (FLOP)
Most compute-intensive programs are manipulating �oating point numbers

The FLOP represent the useful work

6

Measuring the compute speed (FLOPS)

Floating-point operation per seconds (FLOP/s or FLOPS)
Can be used to evaluate the capacity of the hardware

De�nes the peak performance of a computing system

Back to the execution time
A program requires executing 1 TFlop

A system can execute 10 GFlop/s

We can estimate its execution time:

7

Measuring the compute speed (FLOPS)

Floating-point operation per seconds (FLOP/s or FLOPS)
Can be used to evaluate the capacity of the hardware

De�nes the peak performance of a computing system

Back to the execution time
A program requires executing 1 TFlop

A system can execute 10 GFlop/s

We can estimate its execution time:

Execution time = = 100s
1 × 10

12

10 × 10
9

Other usage of FLOPS
FLOPS can also be used to evaluate the e�ciency of an algorithm on a given hardware

Through measurements + comparison with the theoretical value

7

CPI (Cycles per instruction)

Definition:

Another metric that can give an idea of how well a program is behaving on a given hardware:

Measures how often a processor stalls

For instance, can indicate a bad use of the caches

Question:
Is it possible to achieve on one processor core?

Remember ILP

CPI =
execution time

total number of instructions

CPI < 1

8

Performance of parallel programs

The execution time measures the absolute performance

Does not tell us if a parallel program is good

Other metrics need to be introduced

Speedup

E�ciency

Scalability

9

Speedup

Speedup
For a sequential execution time , and a parallel execution time :

When executing on N computing resources, we would like the speedup to be N

This is in general not going to be the case

Question: Can the speedup be more than N?

Ts Tp

Speedup =
Ts

Tp

10

Speedup

Speedup
For a sequential execution time , and a parallel execution time :

When executing on N computing resources, we would like the speedup to be N

This is in general not going to be the case

Question: Can the speedup be more than N?

Ts Tp

Speedup =
Ts

Tp

Super-linear speedup

May happen in di�erent cases:

Less instruction executed in the parallel version of the code (search)

Better usage of the cache/memory/storage hierarchy

10

Amdahl's law

For a program running on N computing resources, where a fraction P of the code is parallel and

S = 1-P is the serial fraction:

Hence, the maximum speedup is:

The speedup of parallel code is limited by the sequential part of the code

Speedup(N) =
1

+ SP

N

Speedu = =pmax

1

S

1

1 − P

11

Amdahl's law

Credit: Daniels220 at English Wikipedia

12

Efficiency

The e�ciency measures how e�ciently the computing resources are used.

For a program running on N computing resources:

Ideally an e�ciency of 100% would be achieved

Efficiency(N) =
Speedup(N)

N

13

Scalability

What limits strong scaling ?

What limits weak scaling ?

Scalability measures the evolution of the efficiency when

the number of processors used increases.

Strong scaling: Compute a problem N times **faster** using N

computing resources

Weak scaling: Compute a problem N times **bigger** in the same

amount of time using N computing resources

14

Scalability

What limits strong scaling ?

What limits weak scaling ?

Scalability measures the evolution of the efficiency when

the number of processors used increases.

Strong scaling: Compute a problem N times **faster** using N

computing resources

Weak scaling: Compute a problem N times **bigger** in the same

amount of time using N computing resources

Amdahl's law

Achieving strong scaling implies minimizing the serial work

14

Scalability

What limits strong scaling ?

What limits weak scaling ?

Scalability measures the evolution of the efficiency when

the number of processors used increases.

Strong scaling: Compute a problem N times **faster** using N

computing resources

Weak scaling: Compute a problem N times **bigger** in the same

amount of time using N computing resources

Amdahl's law

Achieving strong scaling implies minimizing the serial work

Achieving weak scaling implies ensuring that the amount of serial work and the amount of

communication remains constant when the problem size increases

14

Some comments about scalability and speedup

Speedup should be computed based on the most e�cient sequential algorithm

A parallel algorithm might not perform well sequentially

The algorithm that performs the best at small scale is not necessary the one that scales best

An algorithm that has a synchronization/communication cost that increases linearly

with the number of computing resources:

Another algorithm that has a synchronization/communication cost that increases

quadratically:

At the end the most important is the absolute performance

A very slow algorithm that scales well is not interesting

10 × N

2 × N
2

15

Challenges for the
Performance of parallel

programs

16

Idle time

We saw that in general, a parallel e�ciency of 100% is not achievable

One of the main reason is Idle time

Reasons for idle time:

Load imbalance

Management of I/Os

Task dependencies

17

Load imbalance

In this situation, the e�ciency can be computed as a function of the idle time:

Explanation:

We compute the average idle time per processing unit

We compute a ratio to the total execution time

Load imbalance describes a situation where the work is not equally distributed

among the processing units

Efficiency(N) = 1 −

∑ idle times

N

execution time

18

Load imbalance

Case of identical tasks
Load imbalance can appear when the number of tasks to execute is not a multiple of the

number of processing units

Example: 2 PUs -- 3 tasks

See example on the previous slide

Here identical = takes same amount of time to execute

Case of non-identical tasks
In practice, it happens often that not all tasks take the same amount of time to execute

In this case, load imbalance is almost unavoidable

19 . 1

Exercises on load imbalance

Compute the parallel e�ciency in this scenario

Can we assign the tasks di�erently to the processing units to achieve a better e�ciency?

19 . 2

Exercises on load imbalance

Compute the parallel e�ciency in this scenario

Can we assign the tasks di�erently to the processing units to achieve a better e�ciency?

Efficiency = 1 − = 1 − 0.166 = 0.83

6

2

18

19 . 2

Exercises on load imbalance

Compute the parallel e�ciency in this scenario

Can we assign the tasks di�erently to the processing units to achieve a better e�ciency?

Efficiency = 1 − = 1 − 0.166 = 0.83

6

2

18

Efficiency = 1 − = 0.9375

2

2

16

19 . 2

More on load imbalance

When the number of tasks is small, it is possible to compute the optimal solution

Assuming that we are able to accurately evaluate the time to execute each task

When the number of big, it becomes too costly to try computing the optimal solutions

Alternative solutions to static scheduling can be implemented:

Dynamic scheduling

The PUs get new tasks when they are idle

Work stealing

The PUs steal tasks from busy PUs when they are idle

20

Dealing with I/Os

Tasks might need to perform I/O operations to the storage system

Read input data

Write results

Operating systems (together with the hardware) implement a set of mechanisms to limit the

impact of I/O operations on performance

The idea is to overlap I/O operations and computation

Interrupts

DMA engine for data transfers

Assuming that I/O time is less than compute time, it can make I/O almost invisible with a

sequential program

21

Dealing with I/Os

Example
A 4-task parallel program

Each task read a 10-MB �le before starting computing

Takes 1 second on the target platform

Each task performs 400 GFlop of computation

A core can perform 100 GFlops

4 seconds per task

Execution with a single core

Credits: figure from eduWRENCH

22

Dealing with I/Os

Example
A 4-task parallel program

Each task read a 10-MB �le before starting computing

Takes 1 second on the target platform

Each task performs 400 GFlop of computation

A core can perform 100 GFlops

4 seconds per task

Execution with a single core

Credits: figure from eduWRENCH

22

Dealing with I/Os

What happens if we use multiple cores ?
Execution on a 4-core processor

Worst-case scenario: We do all reads before starting processing

Speedup and efficiency

C dit fi f d WRENCH
23

Dealing with I/Os

What happens if we use multiple cores ?
Execution on a 4-core processor

Worst-case scenario: We do all reads before starting processing

Speedup and efficiency

C dit fi f d WRENCH

Speedup = 17/8 = 2.125
Efficiency == = 0.53

2.125

4

Note that here computing the e�ciency based on idle time would give a di�erent result. This is
because the sequential execution was already including idle time.

23

Dealing with I/Os

What happens if we use multiple cores ?
To improve performance we can still try to overlap I/O operations and computations

Credits: figure from eduWRENCH

24 . 1

Dealing with I/Os

What happens if we use multiple cores ?
To improve performance we can still try to overlap I/O operations and computations

Credits: figure from eduWRENCH

There is no performance improvement compared to the previous solution

24 . 1

Exercise about I/Os

A parallel program consists of 2 tasks:

Task 1 reads 20 MB of input, computes 500 G�op, writes back 100 MB of output

Task 2 reads 100 MB of input, computes for 500 G�op, writes back 100 MB of output

We execute this program on a computer with two cores that compute at 100 G�op/sec and with

a disk with 100 MB/sec read and write bandwidth.

Is it better to run Task 1 or Task 2 first?

24 . 2

Exercise about I/Os

A parallel program consists of 2 tasks:

Task 1 reads 20 MB of input, computes 500 G�op, writes back 100 MB of output

Task 2 reads 100 MB of input, computes for 500 G�op, writes back 100 MB of output

We execute this program on a computer with two cores that compute at 100 G�op/sec and with

a disk with 100 MB/sec read and write bandwidth.

Is it better to run Task 1 or Task 2 first?

Running Task 1 �rst allows starting computing earlier

24 . 2

Exercise about I/Os

A parallel program consists of 2 tasks:

Task 1 reads 20 MB of input, computes 500 G�op, writes back 100 MB of output

Task 2 reads 100 MB of input, computes for 500 G�op, writes back 100 MB of output

We execute this program on a computer with two cores that compute at 100 G�op/sec and with

a disk with 100 MB/sec read and write bandwidth.

Is it better to run Task 1 or Task 2 first?

Running Task 1 �rst allows starting computing earlier

T1 �rst -- Exec time = 7.2 s

T2 �rst -- Exec time = 8 s

24 . 2

Task dependencies

Until now, we have assumed that tasks can be executed in any order

It is not always the case

Definitions

The typical reason for having task dependencies is that Task B needs the output of task A

DAG of tasks
It can be convenient to represent dependencies between tasks using a Directed Acyclic Graph

Vertices are tasks

Edges are dependencies

There is a dependency between task A and task B, if B cannot starts executing until A is done

25

Example of DAG

Program that counts the number of car objects in a set of compressed street images.

It includes the following steps:

Each image needs to be uncompressed

Each image is pre-processed to remove noise

Each image is analyzed to �nd cars

Car count statistics are displayed

26

Example of DAG

DAG assuming 5 images

27

Some concepts related to DAGs

DAG level

The entry tasks are the tasks that do not depend on any other tasks

The path length is measured in number of traversed vertices

Maximum level width

Helps determining the maximum number of PUs to use

If the maximum level width is 4

Using 4 PUs should provide a speedup compared to using 3 PUs

It does not necessarily implies that 5 PUs would not improve performance

We do not have to wait for all tasks from one level to terminate before starting

the tasks from the next level

A task is on *level n* of the DAG if the *longest path from the entry task(s)

to this task is of length n*

The maximum level width of a DAG the *maximum number of tasks in one DAG level*

28

Some concepts related to DAGs

Critical path

The path length is measured in task duration, including the entry and the exit task(s)

Allows evaluating the maximum performance that can be obtained

No matter the number of PUs, the program cannot execute faster than the length of

the critical path

The critical path is *the longest path in the DAG from the entry task(s) to the exit task(s)*

29 . 1

Exercise about DAGs

Task level of each task:

Maximum width:

Critical path:

Credits: figure from eduWRENCH

29 . 2

Exercise about DAGs

Task level of each task:

Maximum width:

Critical path:

Credits: figure from eduWRENCH

Level 0: A, B

Level 1: C, D

Level 2: E, F, G

Level 3: H

29 . 2

Exercise about DAGs

Task level of each task:

Maximum width:

Critical path:

Credits: figure from eduWRENCH

Level 0: A, B

Level 1: C, D

Level 2: E, F, G

Level 3: H

Level 2 has 3 tasks

29 . 2

Exercise about DAGs

Task level of each task:

Maximum width:

Critical path:

Credits: figure from eduWRENCH

Level 0: A, B

Level 1: C, D

Level 2: E, F, G

Level 3: H

Level 2 has 3 tasks

A - D - F - H

1 + 20 + 7 + 2 = 30s

29 . 2

Chosing which task to run

Choose a task that is ready to run

All parents tasks are �nished

What if multiple tasks are ready to run?

Multiple strategies are possible

30

Chosing which task to run

Choose a task that is ready to run

All parents tasks are �nished

What if multiple tasks are ready to run?

Multiple strategies are possible
Task on the critical path �rst (in general a good strategy)

Task with the largest work �rst

task with the smallest work �rst

No strategy is always best

30

Other constraint on the execution of tasks:
Memory

Each task comsumes memory space

Load input data

Write output data

Comsuming more memory that the total physical memory space is not recommended

Induces swapping memory pages from/to disk

Very slow, to be avoided

Memory constraints should be taken into account when scheduling tasks

31

Conclusion

32

Take-away points

Several metrics to measure the performance of parallel programs
Execution time

Speedup

E�ciency

Scalability

Amdahl's law implies that infinite scalability is impossible

Problems that impair performance/scalability
Load imbalance

I/O operations

Task dependencies

33

