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Previous lecture

Concurrent programming requires thread synchronization.

The problem:

Threads executing on a shared-memory (multi-)processor is an
asynchronous system.

• A thread can be preempted at any time.

• Reading/writing a data in memory incurs unpredictable delays
(data in L1 cache vs page fault).
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Previous lecture

Classical concurrent programming problems

• Mutual exclusion

• Producer-consumer

Concepts related to concurrent programming

• Critical section

• Busy waiting

• Deadlock

Synchronization primitives

• Locks

• Semaphores

• Condition variables
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High-level goals

How to implement synchronization primitives?

Answering this question is important to:

• Better understand the semantic of the primitives

• Learn about the interactions with the OS

• Learn about the functioning of memory

• Understand the trade-offs between different solutions
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Content of the lecture

Solutions to implement mutual exclusion

• Peterson’s algorithm

• Spinlocks

• Sleeping locks

Basic mechanisms used for synchronization

• Atomic operations (hardware)

• Futex (OS)
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A shared counter (remember . . . )
Example seen during the lab

int count = 0;

Thread 1:

for(i=0; i<10; i++){

count++;

}

Thread 2:

for(i=0; i<10; i++){

count++;

}

What is the final value of count?

• A value between 2 and 20

11



Explanation (remember . . . )

Let’s have a look at the (pseudo) assembly code for count++:

mov count, register

add $0x1, register

mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register

mov count, register
add $0x1, register

mov register, count
mov register, count

At the end, count=1 :-(
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Implementation: First try (remember . . . )

Shared variables:

int count=0;

int busy=0;

Thread 1:

while(busy){;}

busy=1;

count++;

busy=0;

Thread 2:

while(busy){;}

busy=1;

count++;

busy=0;

This solution violates both safety and liveness.
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Critical sections

Thread 1:

Enter CS;

count++;

Leave CS;

Thread 2:

Enter CS;

count++;

Leave CS;

How to implement Enter CS and Leave CS?
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Disabling interrupts
Description

Prevent a thread from being interrupted while it is in CS

• If a thread is not interrupted, it will (hopefully) execute the
CS atomically.

Problems with disabling interrupts

• The solution is unsafe:
▶ Enabling threads to disable interrupts requires allowing them

to run privileged operations. (trust ?)
▶ Possible attack: disable interrupts and run forever.

• The solution is inefficient:
▶ Disabling interrupts is a costly operation.

In any case:

Disabling interrupts does not work on multi-processors!
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Peterson’s algorithm

Presentation
• Mutual exclusion algorithm solely based on read and write
operations to a shared memory

• First correct solution for two threads by Dekker in 1966

• Peterson proposed a simpler solution in 1981
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Peterson’s algorithm
Solution for 2 threads T0 and T1

Algorithm 1 Peterson’s algorithm for thread Ti

Global Variables:
1: bool wants[2] = {false, false};
2: int not turn; /* can be 0 or 1 */

3: enter CS()
4: wants[i] = true;
5: not turn = i;
6: while wants[1-i] == true and not turn == i do
7: /* do nothing */
8: end while

9: leave CS()
10: wants[i] = false;
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Peterson’s algorithm

A few comments:
• wants[i]: To declare that the thread Ti wants to enter.

• not turn: To arbitrate if the 2 threads want to enter.

• Line 6: ”The other thread wants to access and not our turn,
so loop”.
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Correctness of the algorithm

The algorithm is correct. How can it be shown?

• Difficult problem in the general case.

Mathematical Proof
• Reasoning about the properties of the algorithm using
classical methods (induction, contradiction, . . . ).

• Cannot be considered as reliable:
▶ We show only the points that we thought about. What if we

overlooked a problem?
▶ Still increases the confidence of the reader.
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Correctness of the algorithm

Model checking

• Description (state space enumeration)
▶ Represents the algorithms as a set of states and transitions.
▶ Defines a property to be checked (2 threads in CS)
▶ Enumerates all possible states to verify the property (here for 2

threads).

• Complex problem:
▶ Combinatorial blow up of the state-space (polynomial in

number of threads)
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Discussion about correctness

• Mutual exclusion: both threads in CS?

▶ Would mean wants[0] == wants[1] == true,
so not turn would have blocked one thread from CS

• Progress

▶ If T1−i doesn’t want CS, wants[1-i] == false, so Ti won’t
loop

▶ If both threads try to enter, only one thread is the not turn

thread

• Bounded waiting

▶ If Ti wants to lock and T1−i tries to re-enter, T1−i will set
not turn = 1 - i, allowing Ti in.
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Peterson’s algorithm – Limits

• Given solution works for 2 threads

• Can be generalized to n threads but n must be known in
advance

• Note that the current version assumes that the memory is
sequentially consistent. Most processors don’t provide
sequential consistency.
▶ Stay tuned . . .
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Summary

• Disabling interrupts
▶ Does not work on multi-core systems.

• Peterson’s algorithm
▶ Requires to know the number of participants in advance
▶ Uses only load and store operations

To implement a general lock, we need help from the hardware:

• We need atomic operations.
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Atomic operations

Processors provide means to execute read-modify-write operations
atomically on a memory location

• Typically applies to at most 8-bytes-long variables

Common atomic operations

• test and set(type *ptr): sets *ptr to 1 and returns its previous
value

• fetch and add(type *ptr, type val): adds val to *ptr and
returns its previous value

• compare and swap(type *ptr, type oldval, type newval): if
∗ptr == oldval , set *ptr to newval and returns true; returns
false otherwise
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A shared counter
With atomic operations

int count = 0;

Thread 1:

for(i=0; i<10; i++){

fetch_and_add(&count,1);

}

Thread 2:

for(i=0; i<10; i++){

fetch_and_add(&count,1);

}
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Recall: lock using busy waiting (attempt)

struct{
int flag;

} lock t;

void init(lock t ∗L) {
L−>flag = 0;

}

void lock(lock t ∗L) {
while(L−> flag == 1){;}
L−>flag = 1;

}

void unlock(lock t ∗L) {
L−>flag = 0;

}

• Multiple threads can be in CS at the same time!
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Spinlock with test and set()
struct{

int flag;
} lock t;

void init(lock t ∗L) {
L−>flag = 0;

}

void lock(lock t ∗L) {
while (test and set(&L−>flag) == 1){;}

}

void unlock(lock t ∗L) {
L−>flag = 0;

}

Beware:

• The solution is safe and ensures progress

• The solution does not warrant bounded waiting
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Spinlock with compare and swap()
struct{

int flag;
} lock t;

void init(lock t ∗L) {
L−>flag = 0;

}

void lock(lock t ∗L) {
while (!compare and swap(&lock−>flag,0,1)){;}

}

void unlock(lock t ∗L) {
L−>flag = 0;

}

Beware:

• The solution is safe and ensures progress

• The solution does not warrant bounded waiting
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About spinlocks

• As the name suggests, it implies busy waiting:
▶ Busy waiting not only wastes CPU cycles, it interferes with the

execution of other threads.
▶ And what about energy consumption?

• There are more complex algorithms that provide bounded
waiting

• Spinning may be acceptable when the number of threads is
not more than the number of cores

• Spinlocks might be used when the critical section is short
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Sleeping instead of spinning

The problem

• Spinning threads might delay the thread currently executing a
critical section

• Could we use a yield() primitive (explicitly tell the OS that
a thread wants to give up the CPU)?

▶ Simply moves the caller from the running state to the ready
state

▶ Imagine 100 threads competing for the same lock ... still not
doing anything useful 99% of the time

We need to remove threads from the ready list.

• This is what we call sleeping.

• The thread is not eligible anymore to be executed on the CPU.
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Sleeping locks (mutexes): High-level description

lock()

If the mutex is locked, remove the calling thread from the “ready
list” of the kernel (set of threads that are ready to execute), and
insert it into the list of threads waiting on the mutex.

unlock()

If the list of waiting threads is not empty, remove one thread from
the list and put it back into the ready list.
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Sleeping locks: Design

Discussion on performance

• Manipulating the ready list implies a system call (interaction
with the scheduler).

• We should limit the number of system calls (costly)

• The common case is: There is no contention on the lock (a
single thread tries to access the CS)
▶ We should seek for a solution that is optimized for this case.
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User-level mutexes: First try
Assuming a sleep() and a wakeup() system calls are available

struct {
int busy; /∗ true if locked ∗/
thread list t ∗waiters; /∗ threads waiting for lock ∗/

} mutex;

void lock (mutex ∗mtx) {
while (test and set (&mtx−>busy)) {

atomic put (&mtx−>waiters, self); /* list protected by a lock */
sleep ();

}
}

void unlock (mutex ∗mtx) {
mtx−>busy = 0;
wakeup (atomic get (&mtx−>waiters));

}

• Problem: If unlock() is called between (1) and (2), a thread
could sleep forever.
▶ Testing busy and putting the thread to sleep is not atomic.
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Futex

Linux provides the futex system call to solve the problem.

• Ask to sleep if the value of a variable hasn’t changed

Interface:
• void futex(void* addr1, FUTEX WAIT, int val ...)

▶ Calling thread is suspended (“goes to sleep”) if *addr1 == val

• void futex(void* addr1, FUTEX WAKE, int val)
▶ Wakes up at most val threads waiting on addr1
▶ Typical usage: val=1 or val=INT MAX (broadcast)

See “Futexes are tricky” by U. Drepper for a nice discussion on
futexes
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User-level mutexes: First try with futexes

struct {
int busy; /∗1 if busy∗/

} mutex;

void lock (mutex ∗mtx) {
while (test and set (&mtx−>busy))

futex(&mtx−>busy, FUTEX WAIT, 1);
}

void unlock (mutex ∗mtx) {
mtx−>busy = 0;
futex(&mtx−>busy, FUTEX WAKE, 1);

}

Opportunity for improvement

• unlock function makes a call to futex (system call) even when
there is no thread waiting.
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User-level mutexes: Second try with futexes
struct {

int busy; /∗ Counts number of contending threads ∗/
} mutex;

void lock (mutex ∗mtx) {
int c;
while ((c = fetch and add(mtx−>busy, 1)) != 0)

futex(&mtx−>busy, FUTEX WAIT, c+1);
}

void unlock (mutex ∗mtx) {
if (fetch and add(mtx−>busy, −1) != 1) {

mtx−>busy = 0;
futex(&mtx−>busy, FUTEX WAKE, INT MAX);

}
}

• A wrong interleaving of calls to FAA and FUTEX WAIT could
lead to have FUTEX WAIT repeatedly failing (and ultimately
cause an overflow on busy).

• We need to wake up all threads on every unlock() – very costly
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User-level mutexes: good solution with futexes
struct {

// 3−state variable: 0=unlocked, 1=locked no waiters, 2=locked+waiters
int state;

} mutex;

void lock (mutex ∗mtx) {
if (!compare and swap(&mtx−>state, 0, 1)) {

int c = swap(&mtx−>state, 2); /∗atomically write 2, return old value∗/
while (c != 0) {

futex (&mtx−>state, FUTEX WAIT, 2);
c= swap (&mtx−>state, 2);

}
}

}

void unlock (mutex ∗mtx) {
if (fetch and add(mtx−>state, −1) != 1) { /∗ i.e., == 2 ∗/

mtx−>state = 0;
futex (&mtx−>state, FUTEX WAKE, 1);

}
}
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User-level mutexes: good solution with futexes

Comments
• The 3-state variable allows waking up only when needed
without any risk of counter overflow.

• The 3-state variable implies that we use CAS instead of FAA

• The SWAP to mtx->state to 2 is announcing that we are
waiting

• When c==0 after SWAP, it means that we grabbed the lock
▶ mtx->state==0 means that the lock is not held

• mtx->state==2 means that there might be a thread waiting
▶ When a thread is woken up from FUTEX WAIT, it cannot know

if it is the last waiting thread
▶ If the lock is released between the call to CAS and the call to

SWAP, it might be the case that no thread will be waiting
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User-level mutexes: Performance

Performance without contention
• lock: 1 atomic operation + 0 system call

• unlock: 1 atomic operation + 0 system call

Hybrid approach: two-phase lock

• If the lock is about to be released, spinning can be more
efficient than sleeping.

• Idea: Spin for a few iterations before sleeping

• Corresponds to the current implementation of pthread
mutexes.
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Implementation of futexes

Required for correctness:

• On FUTEX WAIT, checking the value and putting the thread
to sleep should be done in an atomic step.
▶ Otherwise we have the same problem as in Slide 36.

• To ensure this, a lock is used inside the kernel.
▶ FUTEX WAIT and FUTEX WAKE start by grabbing that lock.

How to implement the low-level lock?

• The CS is very short (put/get in a list)

• A spinlock can be used !
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Problem with priorities: Priority inversion
Processes/threads in a system might have different priorities:

• If a thread with a high priority is ready to execute, it should
get the CPU instead of threads with lower priority

Priority inversion

1. 2 threads, 1 CPU: priority(T1) > priority(T2)

2. T1 is interrupted; T2 starts executing and grabs a lock.

3. T1 resumes and gets the CPU again.

4. T1 wants to grad the lock: What happens next?

▶ With a spinlock: deadlock → T1 spins forever
▶ With a sleeping lock: ok

▶ But if you add a third thread with priority(T1) > priority(T3)
> priority(T2), even with a sleeping lock T1 and T2 might be
blocked forever (e.g., if T3 never tries to grab the lock, and so,
keeps the CPU forever)
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Problem with priorities: Priority inversion

Definition
The problem is called Priority Inversion because the high priority
task is indirectly blocked by a low priority task.

• Search ”Mars Pathfinder Mission (1997)” for an example

Solutions
• Priority Ceiling: Priority associated with the mutex is assigned
to the task grabbing the mutex
▶ Priority of the mutex should be equal to that of the task with

the highest priority accessing it.

• Priority Inheritance: The low-priority task holding the mutex
gets assigned the priority of the high-priority task contending
for that mutex.
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Additional resources

To complement this lecture, read:

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau
▶ Chapter 28: Locks
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