
Operating Systems
Thread Synchronization Primitives

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2023

1

mailto:thomas.ropars@univ-grenoble-alpes.fr

Agenda

• Week 42: Synchronization primitives

• Week 43: Synchronization implementation [+ First Midterm
Exam]

• Week 44: Vacation

• Week 45: Advanced Synchronization Techniques + CPU
Scheduling

• Week 46: Second Midterm Exam + I/O and Disks

• Week 47: File Systems

2

References

The content of these lectures is inspired by:

• The lecture notes of Prof. André Schiper.

• The lecture notes of Prof. David Mazières.

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:

• Modern Operating Systems by A. Tanenbaum

• Operating System Concepts by A. Silberschatz et al.

3

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
4

Seen previously

Threads
• Schedulable execution context

• Multi-threaded program = multiple threads in the same
process address space

• Allow a process to use several CPUs

• Allow a program to overlap I/O and computation

Implementation

• Kernel-level threads

• User-level threads

• Preemptive vs non-preemptive

5

Seen previously

POSIX threads API (pthreads) – pseudo API:

• tid thread create(void (*fn)(void *), void *arg);

• void thread exit();

• void thread join(tid thread);

Data sharing

• Threads share the data of the enclosing process

6

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
7

Motivation

Observations
• Multi-thread programming is used in many contexts.

▶ It is also called concurrent programming.

• Shared memory is the inter-thread communication medium.

Is it easy to use shared memory to cooperate?

NO

The problem:

A set of threads executing on a shared-memory (multi-)processor is
an asynchronous system.

• A thread can be preempted at any time.

• Reading/writing a data in memory incurs unpredictable delays
(data in L1 cache vs page fault).

8

Motivation

Observations
• Multi-thread programming is used in many contexts.

▶ It is also called concurrent programming.

• Shared memory is the inter-thread communication medium.

Is it easy to use shared memory to cooperate?
NO

The problem:

A set of threads executing on a shared-memory (multi-)processor is
an asynchronous system.

• A thread can be preempted at any time.

• Reading/writing a data in memory incurs unpredictable delays
(data in L1 cache vs page fault).

8

Cooperating in an asynchronous system

Example

2 threads have access to a shared memory

• A data structure (including multiple fields) is stored in shared
memory

• Both threads need to update the data structure

• The system is asynchronous

How can B know:
• whether A is currently modifying the data structure?

• whether A has updated all the fields it wanted it update?

9

High-level goals of the lecture

• Start thinking like a concurrent programmer

• Learn to identify concurrency problems

• Learn to cooperate through shared memory
▶ Synchronization
▶ Communication

• Think about the correctness of an algorithm

10

Content of this lecture

Classical concurrent programming problems

• Mutual exclusion

• Producer-consumer

Concepts related to concurrent programming

• Critical section

• Busy waiting

• Deadlock

Synchronization primitives

• Locks

• Semaphores

• Condition variables

11

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
12

Example: A chat server
Single-threaded version

users/channels

stat. counters

T1

up
da
te

read/write

13

Example: A chat server
Single-threaded version

users/channels

stat. counters

T1

up
da
te

read/write

13

Example: A chat server
Single-threaded version

users/channels

stat. counters

T1

up
da
te

read/write

13

Example: A chat server
First multi-threaded version

users/channels

stat. counters

T1

T2

T3

Tn

upd
ate

up
da
te

up
da
te

stat. counters

read/w
rite

read/write
read/write

users/channels

14

Example: A chat server
First multi-threaded version

users/channels

stat. counters

T1

T2

T3

Tn

upd
ate

up
da
te

up
da
te

stat. counters

read/w
rite

read/write
read/write

users/channels

14

Example: A chat server
First multi-threaded version

users/channels

stat. counters

T1

T2

T3

Tn

upd
ate

up
da
te

up
da
te

stat. counters

read/w
rite

read/write
read/write

users/channels

14

Example: A chat server
First multi-threaded version

users/channels

stat. counters

T1

T2

T3

Tn

upd
ate

up
da
te

up
da
te

stat. counters

read/w
rite

read/write
read/write

users/channels

14

Example: A chat server
First multi-threaded version

users/channels

stat. counters

T1

T2

T3

Tn

upd
ate

up
da
te

up
da
te

stat. counters

read/w
rite

read/write
read/write

users/channels

14

Example: A chat server
First multi-threaded version

users/channels

stat. counters

T1

T2

T3

Tn

upd
ate

up
da
te

up
da
te

stat. counters

read/w
rite

read/write
read/write

users/channels

14

Example: A chat server
Second multi-threaded version

users/channels

stat. counters

T1

Ta

Tb

thread pool

buffer

put
get

15

Example: A chat server
Second multi-threaded version

users/channels

stat. counters

T1

Ta

Tb

thread pool

buffer

put
get

15

Example: A chat server
Second multi-threaded version

users/channels

stat. counters

T1

Ta

Tb

thread pool

buffer

put
get

15

Example: A chat server
Second multi-threaded version

users/channels

stat. counters

T1

Ta

Tb

thread pool

buffer

put
get

15

Classical problems
Synchronization

Mutual exclusion
• Avoid that multiple threads execute operations on the same
data concurrently (critical sections)

• Example: Update data used for statistics

Reader-Writer
• Allow multiple readers or a single writer to access a data

• Example: Access to list of users and channels

16

Classical problems
Synchronization

Mutual exclusion
• Avoid that multiple threads execute operations on the same
data concurrently (critical sections)

• Example: Update data used for statistics

Reader-Writer
• Allow multiple readers or a single writer to access a data

• Example: Access to list of users and channels

16

Classical problems
Cooperation

Producer-Consumer
• Some threads produce some data that are consumed by other
threads

• Example: A queue of tasks

17

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
18

A shared counter

int count = 0;

Thread 1:

for(i=0; i<10; i++){

count++;

}

Thread 2:

for(i=0; i<10; i++){

count++;

}

What is the final value of count?

• A value between 2 and 20

19

A shared counter

int count = 0;

Thread 1:

for(i=0; i<10; i++){

count++;

}

Thread 2:

for(i=0; i<10; i++){

count++;

}

What is the final value of count?

• A value between 2 and 20

19

A shared counter: Explanation

Let’s have a look at the (pseudo) assembly code for count++:

mov count, register

add $0x1, register

mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register

mov count, register
add $0x1, register

mov register, count
mov register, count

At the end, count=1 :-(

20

A shared counter: Explanation

Let’s have a look at the (pseudo) assembly code for count++:

mov count, register

add $0x1, register

mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register

mov count, register
add $0x1, register

mov register, count
mov register, count

At the end, count=1 :-(

20

A shared counter: Explanation

Let’s have a look at the (pseudo) assembly code for count++:

mov count, register

add $0x1, register

mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register

mov count, register
add $0x1, register

mov register, count
mov register, count

At the end, count=1 :-(

20

A shared counter

This may happen:

• When threads execute on different processor cores
• When preemptive threads execute on the same core

▶ A thread can be preempted at any time in this case

We should note that:

• Read/write instructions (mov) are atomic

• Executing i++ corresponds to executing 3 atomic instructions

21

A shared counter

This may happen:

• When threads execute on different processor cores
• When preemptive threads execute on the same core

▶ A thread can be preempted at any time in this case

We should note that:

• Read/write instructions (mov) are atomic

• Executing i++ corresponds to executing 3 atomic instructions

21

Critical section

Critical resource
A critical resource should not be accessed by multiple threads at
the same time. It should be accessed in mutual exclusion.

Critical section (CS)

A critical section is a part of a program code that accesses a
critical resource.

22

Critical section

Critical resource
A critical resource should not be accessed by multiple threads at
the same time. It should be accessed in mutual exclusion.

Critical section (CS)

A critical section is a part of a program code that accesses a
critical resource.

22

Critical section: Definition of the problem

Safety

• Mutual exclusion: At most one thread can be in CS at a time

Liveness
• Progress: If no thread is currently in CS and threads are trying
to access, one should eventually be able to enter the CS.

• Bounded waiting: Once a thread T starts trying to enter the
CS, there is a bound on the number of times other threads
get in.

23

Critical section: About liveness requirements

Liveness requirements are mandatory for a solution to be useful

Progress vs. Bounded waiting

• Progress: If no thread can enter CS, we don’t have progress.

• Bounded waiting: If thread A is waiting to enter CS while B
repeatedly leaves and re-enters C.S. ad infinitum, we don’t
have bounded waiting

24

Critical section: About liveness requirements

Liveness requirements are mandatory for a solution to be useful

Progress vs. Bounded waiting

• Progress: If no thread can enter CS, we don’t have progress.

• Bounded waiting: If thread A is waiting to enter CS while B
repeatedly leaves and re-enters C.S. ad infinitum, we don’t
have bounded waiting

24

Shared counter: New version

Thread 1:

Enter CS;

count++;

Leave CS;

Thread 2:

Enter CS;

count++;

Leave CS;

How to implement Enter CS and Leave CS?

25

Shared counter: New version

Thread 1:

Enter CS;

count++;

Leave CS;

Thread 2:

Enter CS;

count++;

Leave CS;

How to implement Enter CS and Leave CS?

25

Implementation: First try using busy waiting

Shared variables:

int count=0;

int busy=0;

Thread 1:

while(busy){;}

busy=1;

count++;

busy=0;

Thread 2:

while(busy){;}

busy=1;

count++;

busy=0;

26

Exercise

Show through an example that the solution violates safety.

while(busy){;}
while(busy){;}
busy = 1

busy = 1
count++

count++

• The 2 threads access count at the same time.

27

Exercise

Show through an example that the solution violates safety.

while(busy){;}
while(busy){;}
busy = 1

busy = 1
count++

count++

• The 2 threads access count at the same time.

27

Exercise

Show through an example that the solution violates liveness.

while(busy){;}
busy = 1
count++

while(busy){;}
busy = 0
while(busy){;}
busy = 1

while(busy){;}
count++
. . .

• With a bad interleaving of threads, Thread 2 never gets
access to count.

28

Exercise

Show through an example that the solution violates liveness.

while(busy){;}
busy = 1
count++

while(busy){;}
busy = 0
while(busy){;}
busy = 1

while(busy){;}
count++
. . .

• With a bad interleaving of threads, Thread 2 never gets
access to count.

28

Synchronization primitives

To implement mutual exclusion, we need help from the hardware
(and the operating system).

• Implementing mutual exclusion is the topic of next course.

Threading libraries provide synchronization primitives:
• A set of functions that allow synchronizing threads

▶ Locks
▶ Semaphores
▶ Condition variables

29

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
30

Locks

A lock provides a means to achieve mutual exclusion.

Specification

A lock is defined by a lock variable and two methods: lock() and
unlock().

• A lock can be free or held

• lock(): If the lock is free, the calling thread acquires the lock
and enters the CS. Otherwise the thread is blocked until the
lock becomes free.

• unlock(): Releases the lock. It has to be called by the thread
currently holding the lock.

• At any time, at most one thread can hold the lock.

31

Locks

A lock provides a means to achieve mutual exclusion.

Specification

A lock is defined by a lock variable and two methods: lock() and
unlock().

• A lock can be free or held

• lock(): If the lock is free, the calling thread acquires the lock
and enters the CS. Otherwise the thread is blocked until the
lock becomes free.

• unlock(): Releases the lock. It has to be called by the thread
currently holding the lock.

• At any time, at most one thread can hold the lock.

31

Locks

A lock provides a means to achieve mutual exclusion.

Specification

A lock is defined by a lock variable and two methods: lock() and
unlock().

• A lock can be free or held

• lock(): If the lock is free, the calling thread acquires the lock
and enters the CS. Otherwise the thread is blocked until the
lock becomes free.

• unlock(): Releases the lock. It has to be called by the thread
currently holding the lock.

• At any time, at most one thread can hold the lock.

31

Locks

A lock provides a means to achieve mutual exclusion.

Specification

A lock is defined by a lock variable and two methods: lock() and
unlock().

• A lock can be free or held

• lock(): If the lock is free, the calling thread acquires the lock
and enters the CS. Otherwise the thread is blocked until the
lock becomes free.

• unlock(): Releases the lock. It has to be called by the thread
currently holding the lock.

• At any time, at most one thread can hold the lock.

31

Locks

A lock provides a means to achieve mutual exclusion.

Specification

A lock is defined by a lock variable and two methods: lock() and
unlock().

• A lock can be free or held

• lock(): If the lock is free, the calling thread acquires the lock
and enters the CS. Otherwise the thread is blocked until the
lock becomes free.

• unlock(): Releases the lock. It has to be called by the thread
currently holding the lock.

• At any time, at most one thread can hold the lock.

31

Locks: Analogy

lock

unlock

shared data

synchronized

doors

• Calling lock, a thread enters
a waiting room

• A single thread can be in
the CS room (hosting the
shared data)

• When the thread in the CS
room calls unlock, it leaves
the CS room, and lets one
thread from the waiting
room enter (opens the doors
of the CS room)

▶ The doors of the CS room
are initially opened.

32

Locks: Analogy

lock

unlock

shared data

synchronized

doors

• Calling lock, a thread enters
a waiting room

• A single thread can be in
the CS room (hosting the
shared data)

• When the thread in the CS
room calls unlock, it leaves
the CS room, and lets one
thread from the waiting
room enter (opens the doors
of the CS room)

▶ The doors of the CS room
are initially opened.

32

Locks: Analogy

lock

unlock

shared data

synchronized

doors

• Calling lock, a thread enters
a waiting room

• A single thread can be in
the CS room (hosting the
shared data)

• When the thread in the CS
room calls unlock, it leaves
the CS room, and lets one
thread from the waiting
room enter (opens the doors
of the CS room)

▶ The doors of the CS room
are initially opened.

32

Locks: Analogy

lock

unlock

shared data

synchronized

doors

• Calling lock, a thread enters
a waiting room

• A single thread can be in
the CS room (hosting the
shared data)

• When the thread in the CS
room calls unlock, it leaves
the CS room, and lets one
thread from the waiting
room enter (opens the doors
of the CS room)

▶ The doors of the CS room
are initially opened.

32

Locks: Analogy

lock

unlock

shared data

synchronized

doors

• Calling lock, a thread enters
a waiting room

• A single thread can be in
the CS room (hosting the
shared data)

• When the thread in the CS
room calls unlock, it leaves
the CS room, and lets one
thread from the waiting
room enter (opens the doors
of the CS room)
▶ The doors of the CS room

are initially opened.

32

Programming with locks

All critical data should be protected by a lock!

• Critical = accessed by more than one thread, at least one
write

• It is the responsibility of the application writer to correctly use
locks

• Exception is initialization, before data is exposed to other
threads

33

Pthread locks: Mutexes

• mutex: variable of type pthread mutex t

• pthread mutex init(&mutex, ...): initialize the mutex
▶ The macro PTHREAD MUTEX INITIALIZER can be used to

initialize a mutex allocated statically with the default options

• pthread mutex destroy(&mutex): destroy the mutex

• pthread mutex lock(&mutex)

• pthread mutex unlock(&mutex)

• pthread mutex trylock(&mutex): is equivalent to lock(),
except that if the mutex is held, it returns immediately with
an error code

34

Pthread locks: Example

#include <pthread.h>

int count=0;

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;

void* thread_routine(void *arg){

/* ... */

pthread_mutex_lock(&count_mutex);

count++;

pthread_mutex_unlock(&count_mutex);

/* ... */

}

35

Pthread locks attributes
man pthread mutex lock

Several attributes of a lock can be configured at initialization
among which:

• type
▶ NORMAL: Deadlock on relock1

▶ RECURSIVE: Allows relocking. A lock count is implemented (as
many lock() as unlock() calls required).

▶ ERRORCHECK: Error returned on relock.
▶ DEFAULT: Usually maps to NORMAL.

• robust: Defines what happens if a thread terminates without
releasing a lock, and if a non-owner thread calls unlock().

• Other attributes are related to priority management and
visibility of the lock.

1A thread calls lock() on a lock it already locked.
36

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
37

Semaphores

• Locks ensure mutual exclusion.

• A semaphore is another mechanism that allows controlling
access to shared variables but is more powerful than a lock.

• Semaphores were proposed by Dijkstra in 1968

38

Semaphores

A semaphore is initialized with an integer value N and can be
manipulated with two operations P and V.

About the interface
• P stands for Proberen (Dutch) – try

• V stands for Verhogen (Dutch) – increment

POSIX interface
• P → int sem wait(sem t *s)

• V → int sem post(sem t *s)
▶ Other interfaces call it sem signal()

39

Semaphores
When a tread calls sem wait():

N = N - 1;

if(N < 0)

Calling thread is blocked

When a tread calls sem post():

N = N +1;

if(N <= 0)

One blocked thread is unblocked

About the value of N:

• If N > 0, N is the capacity of the semaphore
• if N < 0, N is the number of blocked threads

▶ Warning: The programer cannot read the value of the
semaphore

40

Semaphores
When a tread calls sem wait():

N = N - 1;

if(N < 0)

Calling thread is blocked

When a tread calls sem post():

N = N +1;

if(N <= 0)

One blocked thread is unblocked

About the value of N:

• If N > 0, N is the capacity of the semaphore
• if N < 0, N is the number of blocked threads

▶ Warning: The programer cannot read the value of the
semaphore

40

Mutual exclusion with semaphores

• Initializing a semaphore with value N can be seen as providing
it with N tokens

• To implement critical sections, a semaphore should be
initialized with N = 1
▶ Warning: A semaphore with N = 1 and a lock are not

equivalent

Example

#include <semaphore.h>

int count=0;

sem_t count_mutex;

sem_init(&count_mutex, 0, 1);

/* ... */

sem_wait(&count_mutex);

count++;

sem_post(&count_mutex);

41

Mutual exclusion with semaphores
• Initializing a semaphore with value N can be seen as providing
it with N tokens

• To implement critical sections, a semaphore should be
initialized with N = 1
▶ Warning: A semaphore with N = 1 and a lock are not

equivalent

Example

#include <semaphore.h>

int count=0;

sem_t count_mutex;

sem_init(&count_mutex, 0, 1);

/* ... */

sem_wait(&count_mutex);

count++;

sem_post(&count_mutex);

41

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
42

Specification of the problem

Recall

T1

Ta

Tb

buffer

put
get

Specification

• A buffer of fixed size

• Producer threads put items into the buffer. The put operation
blocks if the buffer is full

• Consumer threads get items from the buffer. The get
operation blocks if the buffer is empty

43

Producer-Consumer

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

while (count == BUFFER SIZE) {

/* Do nothing */

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

}

}

void consumer (void *ignored) {

for (;;) {

while (count == 0) {

/* Do nothing */

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

/* consume the item in

nextConsumed */

}

}

44

Producer-Consumer

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

while (count == BUFFER SIZE) {

/* Do nothing */

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

}

}

void consumer (void *ignored) {

for (;;) {

while (count == 0) {

/* Do nothing */

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

/* consume the item in

nextConsumed */

}

}

Not correct: shared data are not protected

• count can be accessed by the prod. and the cons.

• With multiple prod./cons., concurrent accesses to in, out, buffer

44

Producer-Consumer with Locks

mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE) {

sched yield (); // Release CPU

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0) {

sched yield (); // Release CPU

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

mutex unlock (&mutex);

/* consume the item in

nextConsumed */

}

}

44

Producer-Consumer with Locks
mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE) {

sched yield (); // Release CPU

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0) {

sched yield (); // Release CPU

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

mutex unlock (&mutex);

/* consume the item in

nextConsumed */

}

}

Not correct: If a thread enters a while loop, all threads are blocked
forever (deadlock)

• yield() does not release the lock

44

Producer-Consumer with Locks

mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

sched yield ();

mutex lock (&mutex);

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0) {

mutex unlock (&mutex);

sched yield ();

mutex lock (&mutex);

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

mutex unlock (&mutex);

/* consume the item in

nextConsumed */

}

}

44

Producer-Consumer with Locks
mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

sched yield ();

mutex lock (&mutex);

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0) {

mutex unlock (&mutex);

sched yield ();

mutex lock (&mutex);

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

mutex unlock (&mutex);

/* consume the item in

nextConsumed */

}

}

Correct ... but busy waiting

• We don’t want busy waiting

44

About Busy Waiting
Busy waiting

Waiting for some condition to become true by repeatedly checking
(spinning) the value of some variable.

Why is it bad?

• Waste of CPU cycles
▶ Use CPU cycles to check the value of a variable while there is

no evidence that this value has changed.
▶ Follows from previous comment: Using sleep is still busy

waiting.

• On a single processor: Wasted cycles could have been used by
other threads.

• On a multi-processor: Repeatedly reading a variable that is
used by other threads can slow down these threads.
▶ In specific cases, with a careful design, busy waiting can be

efficient.

45

Cooperation

Cooperation = Synchronization + Communication

• Synchronization: Imposing an order on the execution of
instructions

• Communication: Exchanging information between threads

Semaphores allow cooperation between threads

46

Producer-Consumer with semaphores

• Initialize fullCount to 0 (block consumer on empty buffer)

• Initialize emptyCount to N (block producer when buffer full)

• An additional semaphore (initialized to 1) should be used for
mutual exclusion (a lock could be used instead)

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

sem_wait(&emptyCount);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

/*count++;*/

sem_post(&fullCount)

}

}

void consumer (void *ignored) {

for (;;) {

sem_wait(&fullCount);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/*count--;*/

sem_post(&emptyCount);

/* consume the item in

nextConsumed */

}

}

47

Producer-Consumer with semaphores

• Initialize fullCount to 0 (block consumer on empty buffer)

• Initialize emptyCount to N (block producer when buffer full)

• An additional semaphore (initialized to 1) should be used for
mutual exclusion (a lock could be used instead)

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

sem_wait(&emptyCount);

sem_wait(&mutex)

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

/*count++;*/

sem_post(&mutex)

sem_post(&fullCount)

}

}

void consumer (void *ignored) {

for (;;) {

sem_wait(&fullCount);

sem_wait(&mutex)

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/*count--;*/

sem_post(&mutex)

sem_post(&emptyCount);

/* consume the item in

nextConsumed */

}

}

47

Comments on semaphores

• Semaphores allow elegant solutions to some problems
(producer-consumer, reader-writer)

• However they are quite error prone:
▶ If you call wait instead of post, you’ll have a deadlock
▶ If you forget to protect parts of your code, you might violate

mutual exclusion
▶ You have “tokens” of different types, which may be hard to

reason about

This is why other constructs have been proposed

48

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
49

Condition variables (pthreads)

A condition variable is a special shared variable.
• It allows a thread to explicitly put itself to wait.

▶ The condition variable can be seen as a container of waiting
threads.

▶ As such, this variable does not have a value.

• It is used together with a mutex:
▶ When a thread puts itself to wait, the corresponding mutex is

released.

• It is often associated to a logical condition (reason for this
name)

50

Condition variables (pthreads)
Interface

• cond: variable of type pthread cond t

• pthread cond init(&cond, ...): initialize the condition
▶ The macro PTHREAD COND INITIALIZER can be used to

initialize a condition variable allocated statically with the
default options

• void pthread cond wait(&cond, &mutex): atomically
unlock mutex and put the thread to wait on cond.

• void pthread cond signal(&cond) and
pthread cond broadcast(&cond): Wake one/all the
threads waiting on cond.

51

Condition variable: Analogy

lock

unlock

shared data

synchronized

doors

52

Condition variable: Analogy

wait

signal

lock

unlock

synchronized

doors

shared data

52

On the semantic of the operations

• Calling wait() releases the lock similarly to unlock().

• When a thread is woken up by a call to signal() (or
broadcast()), it is guaranteed that at the time it returns
from wait(), it owns the corresponding lock again.
▶ However, it has to compete with other threads to acquire that

lock before returning from wait().

• On a call to signal(), any of the waiting threads might be
the one that is woken up.

• Calling functions signal() and broadcast() does not
require owning the lock.
▶ However in most cases the lock should be held for the

application logic to be correct.

53

Producer-Consumer with condition variables
mutex t mutex = MUTEX INITIALIZER;

cond t nonempty = COND INITIALIZER;

cond t nonfull = COND INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and

put in nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE)

cond wait (&nonfull, &mutex);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

cond signal (&nonempty);

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0)

cond wait (&nonempty, &mutex);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

cond signal (&nonfull);

mutex unlock (&mutex);

/* consume the item

in nextConsumed */

}

}

Beware: this solution does not warrant First Come First Served!

54

More on condition variables
Why must cond wait both release mutex and sleep? Why not
separate mutexes and condition variables?

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

cond wait(&nonfull);

mutex lock (&mutex);

}

A thread could end up stuck waiting because of a bad interleaving
▶ A condition variable has no associated state

PRODUCER

while (count == BUFFER SIZE){

mutex unlock (&mutex);

cond wait (&nonfull);

}

CONSUMER

mutex lock (&mutex);

...

count--;

cond signal (&nonfull);

55

More on condition variables
Why must cond wait both release mutex and sleep? Why not
separate mutexes and condition variables?

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

cond wait(&nonfull);

mutex lock (&mutex);

}

A thread could end up stuck waiting because of a bad interleaving
▶ A condition variable has no associated state

PRODUCER

while (count == BUFFER SIZE){

mutex unlock (&mutex);

cond wait (&nonfull);

}

CONSUMER

mutex lock (&mutex);

...

count--;

cond signal (&nonfull);

55

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
56

Monitors

• A monitor is a synchronization construct

• It provides synchronization mechanisms similar to mutex +
condition variables. (Some people call both “monitors”)

Definition
• A monitor is an object/module with a set of methods.

• Each method is executed in mutual exclusion

• Condition variables (or simply “conditions”) are defined with
the same semantic as defined previously

57

Comments on monitors

• Proposed by Brinch Hansen (1973) and Hoare (1974)

• Possibly less error prone than raw mutexes

• Basic synchronization mechanism in Java

• Different flavors depending on the semantic of signal:
▶ Hoare-style: The signaled thread get immediately access to the

monitor. The signaling thread waits until the signaled threads
leaves the monitor.

▶ Mesa-style (java): The signaling thread stays in the monitor.

• Semaphores can be implemented using monitors and monitors
can be implemented using semaphores

58

Agenda

Goals of the lecture

A Multi-Threaded Application

Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem

Condition Variables

Monitors

Other synchronization problems
59

The Reader-Writer problem

Problem statement
• Several threads try to access the same shared data, some
reading, other writing.

• Either a single writer or multiple readers can access the shared
data at any time

Different flavors
• Priority to readers

• Priority to writers

60

The Dining Philosophers problem
Proposed by Dijkstra

Problem statement
5 philosophers spend their live alternatively thinking and eating.
They sit around a circular table. The table has a big plate of rice
but only 5 chopsticks, placed between each pair of philosophers.
When a philosopher wants to eat, he has to peak the chopsticks on
his left and on his right. Two philosophers can’t use a chopstick at
the same time. How to ensure that no philosopher will starve?

Goals
• Avoid deadlocks: Each philosopher holds one chopstick

• Avoid starvation: Some philosophers never eat

61

	Thread Synchronization
	Goals of the lecture
	A Multi-Threaded Application
	Mutual Exclusion
	Locks
	Semaphores
	The Producer-Consumer Problem
	Condition Variables
	Monitors
	Other synchronization problems

