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Agenda

• Week 42: Synchronization primitives

• Week 43: Synchronization implementation [+ First Midterm
Exam]

• Week 44: Vacation

• Week 45: Advanced Synchronization Techniques + CPU
Scheduling

• Week 46: Second Midterm Exam + I/O and Disks

• Week 47: File Systems
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Seen previously

Threads
• Schedulable execution context

• Multi-threaded program = multiple threads in the same
process address space

• Allow a process to use several CPUs

• Allow a program to overlap I/O and computation

Implementation

• Kernel-level threads

• User-level threads

• Preemptive vs non-preemptive
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Seen previously

POSIX threads API (pthreads) – pseudo API:

• tid thread create(void (*fn)(void *), void *arg);

• void thread exit();

• void thread join(tid thread);

Data sharing

• Threads share the data of the enclosing process
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Motivation

Observations
• Multi-thread programming is used in many contexts.

▶ It is also called concurrent programming.

• Shared memory is the inter-thread communication medium.

Is it easy to use shared memory to cooperate?

NO

The problem:

A set of threads executing on a shared-memory (multi-)processor is
an asynchronous system.

• A thread can be preempted at any time.

• Reading/writing a data in memory incurs unpredictable delays
(data in L1 cache vs page fault).
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Cooperating in an asynchronous system

Example

2 threads have access to a shared memory

• A data structure (including multiple fields) is stored in shared
memory

• Both threads need to update the data structure

• The system is asynchronous

How can B know:
• whether A is currently modifying the data structure?

• whether A has updated all the fields it wanted it update?
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High-level goals of the lecture

• Start thinking like a concurrent programmer

• Learn to identify concurrency problems

• Learn to cooperate through shared memory
▶ Synchronization
▶ Communication

• Think about the correctness of an algorithm
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Content of this lecture

Classical concurrent programming problems

• Mutual exclusion

• Producer-consumer

Concepts related to concurrent programming

• Critical section

• Busy waiting

• Deadlock

Synchronization primitives

• Locks

• Semaphores

• Condition variables
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Example: A chat server
Single-threaded version

users/channels

stat. counters

T1

up
da
te

read/write
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Example: A chat server
Second multi-threaded version

users/channels

stat. counters

T1

Ta

Tb

thread pool

buffer

put
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Classical problems
Synchronization

Mutual exclusion
• Avoid that multiple threads execute operations on the same
data concurrently (critical sections)

• Example: Update data used for statistics

Reader-Writer
• Allow multiple readers or a single writer to access a data

• Example: Access to list of users and channels
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Classical problems
Cooperation

Producer-Consumer
• Some threads produce some data that are consumed by other
threads

• Example: A queue of tasks
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A shared counter

int count = 0;

Thread 1:

for(i=0; i<10; i++){

count++;

}

Thread 2:

for(i=0; i<10; i++){

count++;

}

What is the final value of count?

• A value between 2 and 20

19
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A shared counter: Explanation

Let’s have a look at the (pseudo) assembly code for count++:

mov count, register

add $0x1, register

mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register

mov count, register
add $0x1, register

mov register, count
mov register, count

At the end, count=1 :-(
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A shared counter

This may happen:

• When threads execute on different processor cores
• When preemptive threads execute on the same core

▶ A thread can be preempted at any time in this case

We should note that:

• Read/write instructions (mov) are atomic

• Executing i++ corresponds to executing 3 atomic instructions

21
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Critical section

Critical resource
A critical resource should not be accessed by multiple threads at
the same time. It should be accessed in mutual exclusion.

Critical section (CS)

A critical section is a part of a program code that accesses a
critical resource.
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Critical section: Definition of the problem

Safety

• Mutual exclusion: At most one thread can be in CS at a time

Liveness
• Progress: If no thread is currently in CS and threads are trying
to access, one should eventually be able to enter the CS.

• Bounded waiting: Once a thread T starts trying to enter the
CS, there is a bound on the number of times other threads
get in.
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Critical section: About liveness requirements

Liveness requirements are mandatory for a solution to be useful

Progress vs. Bounded waiting

• Progress: If no thread can enter CS, we don’t have progress.

• Bounded waiting: If thread A is waiting to enter CS while B
repeatedly leaves and re-enters C.S. ad infinitum, we don’t
have bounded waiting

24
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Shared counter: New version

Thread 1:

Enter CS;

count++;

Leave CS;

Thread 2:

Enter CS;

count++;

Leave CS;

How to implement Enter CS and Leave CS?
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Implementation: First try using busy waiting

Shared variables:

int count=0;

int busy=0;

Thread 1:

while(busy){;}

busy=1;

count++;

busy=0;

Thread 2:

while(busy){;}

busy=1;

count++;

busy=0;
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Exercise

Show through an example that the solution violates safety.

while(busy){;}
while(busy){;}
busy = 1

busy = 1
count++

count++

• The 2 threads access count at the same time.
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count++
. . .

• With a bad interleaving of threads, Thread 2 never gets
access to count.
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Synchronization primitives

To implement mutual exclusion, we need help from the hardware
(and the operating system).

• Implementing mutual exclusion is the topic of next course.

Threading libraries provide synchronization primitives:
• A set of functions that allow synchronizing threads

▶ Locks
▶ Semaphores
▶ Condition variables
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Locks

A lock provides a means to achieve mutual exclusion.

Specification

A lock is defined by a lock variable and two methods: lock() and
unlock().

• A lock can be free or held

• lock(): If the lock is free, the calling thread acquires the lock
and enters the CS. Otherwise the thread is blocked until the
lock becomes free.

• unlock(): Releases the lock. It has to be called by the thread
currently holding the lock.

• At any time, at most one thread can hold the lock.
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Locks: Analogy

lock

unlock

shared data

synchronized

doors

• Calling lock, a thread enters
a waiting room

• A single thread can be in
the CS room (hosting the
shared data)

• When the thread in the CS
room calls unlock, it leaves
the CS room, and lets one
thread from the waiting
room enter (opens the doors
of the CS room)

▶ The doors of the CS room
are initially opened.
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Programming with locks

All critical data should be protected by a lock!

• Critical = accessed by more than one thread, at least one
write

• It is the responsibility of the application writer to correctly use
locks

• Exception is initialization, before data is exposed to other
threads
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Pthread locks: Mutexes

• mutex: variable of type pthread mutex t

• pthread mutex init(&mutex, ...): initialize the mutex
▶ The macro PTHREAD MUTEX INITIALIZER can be used to

initialize a mutex allocated statically with the default options

• pthread mutex destroy(&mutex): destroy the mutex

• pthread mutex lock(&mutex)

• pthread mutex unlock(&mutex)

• pthread mutex trylock(&mutex): is equivalent to lock(),
except that if the mutex is held, it returns immediately with
an error code
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Pthread locks: Example

#include <pthread.h>

int count=0;

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;

void* thread_routine(void *arg){

/* ... */

pthread_mutex_lock(&count_mutex);

count++;

pthread_mutex_unlock(&count_mutex);

/* ... */

}
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Pthread locks attributes
man pthread mutex lock

Several attributes of a lock can be configured at initialization
among which:

• type
▶ NORMAL: Deadlock on relock1

▶ RECURSIVE: Allows relocking. A lock count is implemented (as
many lock() as unlock() calls required).

▶ ERRORCHECK: Error returned on relock.
▶ DEFAULT: Usually maps to NORMAL.

• robust: Defines what happens if a thread terminates without
releasing a lock, and if a non-owner thread calls unlock().

• Other attributes are related to priority management and
visibility of the lock.

1A thread calls lock() on a lock it already locked.
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Semaphores

• Locks ensure mutual exclusion.

• A semaphore is another mechanism that allows controlling
access to shared variables but is more powerful than a lock.

• Semaphores were proposed by Dijkstra in 1968
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Semaphores

A semaphore is initialized with an integer value N and can be
manipulated with two operations P and V.

About the interface
• P stands for Proberen (Dutch) – try

• V stands for Verhogen (Dutch) – increment

POSIX interface
• P → int sem wait(sem t *s)

• V → int sem post(sem t *s)
▶ Other interfaces call it sem signal()
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Semaphores
When a tread calls sem wait():

N = N - 1;

if( N < 0 )

Calling thread is blocked

When a tread calls sem post():

N = N +1;

if( N <= 0 )

One blocked thread is unblocked

About the value of N:

• If N > 0, N is the capacity of the semaphore
• if N < 0, N is the number of blocked threads

▶ Warning: The programer cannot read the value of the
semaphore

40
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Mutual exclusion with semaphores

• Initializing a semaphore with value N can be seen as providing
it with N tokens

• To implement critical sections, a semaphore should be
initialized with N = 1
▶ Warning: A semaphore with N = 1 and a lock are not

equivalent

Example

#include <semaphore.h>

int count=0;

sem_t count_mutex;

sem_init(&count_mutex, 0, 1);

/* ... */

sem_wait(&count_mutex);

count++;

sem_post(&count_mutex);
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Specification of the problem

Recall

T1

Ta

Tb

buffer

put
get

Specification

• A buffer of fixed size

• Producer threads put items into the buffer. The put operation
blocks if the buffer is full

• Consumer threads get items from the buffer. The get
operation blocks if the buffer is empty
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Producer-Consumer

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

while (count == BUFFER SIZE) {

/* Do nothing */

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

}

}

void consumer (void *ignored) {

for (;;) {

while (count == 0) {

/* Do nothing */

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

/* consume the item in

nextConsumed */

}

}
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Not correct: shared data are not protected

• count can be accessed by the prod. and the cons.

• With multiple prod./cons., concurrent accesses to in, out, buffer
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Producer-Consumer with Locks

mutex t mutex = MUTEX INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE) {

sched yield (); // Release CPU

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0) {

sched yield (); // Release CPU

}

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

mutex unlock (&mutex);
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}
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Not correct: If a thread enters a while loop, all threads are blocked
forever (deadlock)

• yield() does not release the lock
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Correct ... but busy waiting

• We don’t want busy waiting
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About Busy Waiting
Busy waiting

Waiting for some condition to become true by repeatedly checking
(spinning) the value of some variable.

Why is it bad?

• Waste of CPU cycles
▶ Use CPU cycles to check the value of a variable while there is

no evidence that this value has changed.
▶ Follows from previous comment: Using sleep is still busy

waiting.

• On a single processor: Wasted cycles could have been used by
other threads.

• On a multi-processor: Repeatedly reading a variable that is
used by other threads can slow down these threads.
▶ In specific cases, with a careful design, busy waiting can be

efficient.
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Cooperation

Cooperation = Synchronization + Communication

• Synchronization: Imposing an order on the execution of
instructions

• Communication: Exchanging information between threads

Semaphores allow cooperation between threads
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Producer-Consumer with semaphores

• Initialize fullCount to 0 (block consumer on empty buffer)

• Initialize emptyCount to N (block producer when buffer full)

• An additional semaphore (initialized to 1) should be used for
mutual exclusion (a lock could be used instead)

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

sem_wait(&emptyCount);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

/*count++;*/

sem_post(&fullCount)

}

}

void consumer (void *ignored) {

for (;;) {

sem_wait(&fullCount);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/*count--;*/

sem_post(&emptyCount);

/* consume the item in

nextConsumed */

}

}
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Producer-Consumer with semaphores

• Initialize fullCount to 0 (block consumer on empty buffer)

• Initialize emptyCount to N (block producer when buffer full)

• An additional semaphore (initialized to 1) should be used for
mutual exclusion (a lock could be used instead)

void producer (void *ignored) {

for (;;) {

/* produce an item and put in

nextProduced */

sem_wait(&emptyCount);

sem_wait(&mutex)

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

/*count++;*/

sem_post(&mutex)

sem_post(&fullCount)

}

}

void consumer (void *ignored) {

for (;;) {

sem_wait(&fullCount);

sem_wait(&mutex)

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/*count--;*/

sem_post(&mutex)

sem_post(&emptyCount);

/* consume the item in

nextConsumed */

}

}
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Comments on semaphores

• Semaphores allow elegant solutions to some problems
(producer-consumer, reader-writer)

• However they are quite error prone:
▶ If you call wait instead of post, you’ll have a deadlock
▶ If you forget to protect parts of your code, you might violate

mutual exclusion
▶ You have “tokens” of different types, which may be hard to

reason about

This is why other constructs have been proposed
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Condition variables (pthreads)

A condition variable is a special shared variable.
• It allows a thread to explicitly put itself to wait.

▶ The condition variable can be seen as a container of waiting
threads.

▶ As such, this variable does not have a value.

• It is used together with a mutex:
▶ When a thread puts itself to wait, the corresponding mutex is

released.

• It is often associated to a logical condition (reason for this
name)
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Condition variables (pthreads)
Interface

• cond: variable of type pthread cond t

• pthread cond init(&cond, ...): initialize the condition
▶ The macro PTHREAD COND INITIALIZER can be used to

initialize a condition variable allocated statically with the
default options

• void pthread cond wait(&cond, &mutex): atomically
unlock mutex and put the thread to wait on cond.

• void pthread cond signal(&cond) and
pthread cond broadcast(&cond): Wake one/all the
threads waiting on cond.
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Condition variable: Analogy

lock

unlock

shared data

synchronized

doors
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Condition variable: Analogy

wait

signal

lock

unlock

synchronized

doors

shared data
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On the semantic of the operations

• Calling wait() releases the lock similarly to unlock().

• When a thread is woken up by a call to signal() (or
broadcast()), it is guaranteed that at the time it returns
from wait(), it owns the corresponding lock again.
▶ However, it has to compete with other threads to acquire that

lock before returning from wait().

• On a call to signal(), any of the waiting threads might be
the one that is woken up.

• Calling functions signal() and broadcast() does not
require owning the lock.
▶ However in most cases the lock should be held for the

application logic to be correct.
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Producer-Consumer with condition variables
mutex t mutex = MUTEX INITIALIZER;

cond t nonempty = COND INITIALIZER;

cond t nonfull = COND INITIALIZER;

void producer (void *ignored) {

for (;;) {

/* produce an item and

put in nextProduced */

mutex lock (&mutex);

while (count == BUFFER SIZE)

cond wait (&nonfull, &mutex);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

count++;

cond signal (&nonempty);

mutex unlock (&mutex);

}

}

void consumer (void *ignored) {

for (;;) {

mutex lock (&mutex);

while (count == 0)

cond wait (&nonempty, &mutex);

nextConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

count--;

cond signal (&nonfull);

mutex unlock (&mutex);

/* consume the item

in nextConsumed */

}

}

Beware: this solution does not warrant First Come First Served!
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More on condition variables
Why must cond wait both release mutex and sleep? Why not
separate mutexes and condition variables?

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

cond wait(&nonfull);

mutex lock (&mutex);

}

A thread could end up stuck waiting because of a bad interleaving
▶ A condition variable has no associated state

PRODUCER

while (count == BUFFER SIZE){

mutex unlock (&mutex);

cond wait (&nonfull);

}

CONSUMER

mutex lock (&mutex);

...

count--;

cond signal (&nonfull);
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More on condition variables
Why must cond wait both release mutex and sleep? Why not
separate mutexes and condition variables?

while (count == BUFFER SIZE) {

mutex unlock (&mutex);

cond wait(&nonfull);

mutex lock (&mutex);

}

A thread could end up stuck waiting because of a bad interleaving
▶ A condition variable has no associated state

PRODUCER

while (count == BUFFER SIZE){

mutex unlock (&mutex);

cond wait (&nonfull);

}

CONSUMER

mutex lock (&mutex);

...

count--;

cond signal (&nonfull);
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Monitors

• A monitor is a synchronization construct

• It provides synchronization mechanisms similar to mutex +
condition variables. (Some people call both “monitors”)

Definition
• A monitor is an object/module with a set of methods.

• Each method is executed in mutual exclusion

• Condition variables (or simply “conditions”) are defined with
the same semantic as defined previously
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Comments on monitors

• Proposed by Brinch Hansen (1973) and Hoare (1974)

• Possibly less error prone than raw mutexes

• Basic synchronization mechanism in Java

• Different flavors depending on the semantic of signal:
▶ Hoare-style: The signaled thread get immediately access to the

monitor. The signaling thread waits until the signaled threads
leaves the monitor.

▶ Mesa-style (java): The signaling thread stays in the monitor.

• Semaphores can be implemented using monitors and monitors
can be implemented using semaphores
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The Reader-Writer problem

Problem statement
• Several threads try to access the same shared data, some
reading, other writing.

• Either a single writer or multiple readers can access the shared
data at any time

Different flavors
• Priority to readers

• Priority to writers
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The Dining Philosophers problem
Proposed by Dijkstra

Problem statement
5 philosophers spend their live alternatively thinking and eating.
They sit around a circular table. The table has a big plate of rice
but only 5 chopsticks, placed between each pair of philosophers.
When a philosopher wants to eat, he has to peak the chopsticks on
his left and on his right. Two philosophers can’t use a chopstick at
the same time. How to ensure that no philosopher will starve?

Goals
• Avoid deadlocks: Each philosopher holds one chopstick

• Avoid starvation: Some philosophers never eat

61


	Thread Synchronization
	Goals of the lecture
	A Multi-Threaded Application
	Mutual Exclusion
	Locks
	Semaphores
	The Producer-Consumer Problem
	Condition Variables
	Monitors
	Other synchronization problems


