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References

• The lecture notes of V. Leroy

• Designing Data-Intensive Applications by Martin Kleppmann
▶ Chapter 11
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In this lecture

• Introduction to Stream Processing

• Transmitting data streams

• An overview of Stream Processing engines
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An unbounded dataset

Batch processing

• Data are stored in files

• Process the whole data at once

• Examples: Hadoop MapReduce, Spark, etc.

In many use-cases, new data are generated continuously

• Data from sensors

• Data from social networks

• Web traffic

• Etc.
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Near real-time processing

In many cases, data should be processed as early as possible:

• Detecting fraudulent behavior

• Identifying malfunctioning systems

• Monitoring trends (social networks, system load)

Adapting batch processing systems?

• Processing all the data of the day at the end of each day

▶ High latency§

• We need to process data more frequently
▶ This is what stream processing engines do
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Stream vs Batch processing

Batch processing

• Good for analyzing a static dataset

• Focuses on throughput

• Allows running complex analysis requiring multiple iterations
on the data

Stream processing

• Good to analyze live data

• Continuously updates results based on new data

• Focuses on latency (between data production and update of
the results)

• Processes data once
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Stream processing computation

Stream analytics

• Measuring event rates

• Computing rolling statistics (average, histograms, etc)

• Comparing statistics to previous values (detecting trends)

• Sampling data

• Filtering data

• Applying basic machine learning algorithms
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Questions related to stream processing

• How to transmit data from the producers to the consumers?
▶ With multiple producers and/or consumers?

• How to process events in a distributed way?

• How to deal with failures?

• How to reason about time?

• How to maintain a state over time?
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Motivation

sensor

web traffic

sensor

Producers Message broker Consumers
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Challenges

Routing messages

• Some consumers are only interested in some messages

• Some messages are useful for multiple consumers

Performance
• Amount of produced data might be huge

• Data might me produced faster than they are processed

Fault tolerance
• Clients might connect/disconnect at any time
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Log-based message broker

Main principles

• Maintain a log of all the messages received
▶ Append-only sequence of records on disk

• Each record is identified with a sequence number

• The offset of each client in the log can be stored

Existing systems

• Apache Kafka

• Amazon Kinesis Data Streams
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Kafka
https://kafka.apache.org/

• Originally developed at LinkedIn

• Open-source

• Used by many companies
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Kafka main principles

A partitioned log

The log is divided into multiple partitions

• Each partition has its own monotonically increasing sequence
number

• Partitions can be hosted on different machines

Advantages of logs

• Old records can be replayed
▶ Clients can arrive late or disconnect
▶ Question: How to do garbage collection?

• Note that filling a 6TB disk takes half a day

• Data are buffered in the log
▶ Deal with the case where the consumers are slower than the

producers
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Kafka communication abstractions

Topics

• Partitions are grouped into logical topics

• A producer can send to multiple topics

Consumer groups

• Consumers gather themselves into consumer groups

• A consumer group can register to one or several topics

• Multiple groups can register to the same topic
• Each record is delivered to one consumer in each registered
group
▶ Records from one partition are send to exactly one consumer in

a group
▶ Total-order delivery is only ensured inside partitions
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Kafka consumer groups
source https://kafka.apache.org/documentation/#gettingStarted

2 types of communication patterns

• Load balancing

• Broadcasting
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Kafka fault tolerance

Data availability

• A Kafka cluster spans multiple nodes

• Partitions are replicated on multiple nodes

Dealing with consumer disconnections/failures

• Offset of the consumer in the log partition is recorded
permanently

• The same/another consumer can start processing records from
this point

• Provided delivery semantics:
▶ At-least-once
▶ At-most-once
▶ In some cases exactly-once semantic can be ensured (relies on

transaction mechanisms)
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Stream processing engines

Description

• A set of transformations is applied to a stream of records
▶ A program is a graph of transformations (Directed acyclic

graph)
▶ Transformations are the same operations as in batch

processing systems

Examples

• Storm

• Flink

• Samza

• Spark streaming
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Graph of transformations (Flink)
source https://ci.apache.org/projects/flink/flink-docs-release-1.6/

concepts/programming-model.html

Source
DataStream<String> lines = env.addSource(

new FlinkKafkaConsumer<>(…));

DataStream<Event> events = lines.map((line) -> parse(line));

DataStream<Statistics> stats = events

.keyBy("id")

.timeWindow(Time.seconds(10))

.apply(new MyWindowAggregationFunction());

stats.addSink(new RollingSink(path));

Source map()

Transformation

Transformation

Source
Operator

keyBy()/
window()/
apply()

Sink

Transformation
Operators

Sink
Operator

Stream

Sink

Streaming Dataflow
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Parallel Dataflow (Flink)

Source map()
keyBy()/
window()/
apply()

Sink

Operator
Subtask

Source
[1]

map()
[1]

keyBy()/
window()/
apply()

[1]

Sink
[1]

Source
[2]

map()
[2]

keyBy()/
window()/
apply()

[2]

Stream
Partition

Operator Stream

Streaming Dataflow
(parallelized view)

Streaming Dataflow
(condensed view)

parallelism = 1

parallelism = 2
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About the notion of time

To run computations on a continuous stream, it has to be split
into windows.

Size of the windows
• 1 event: Each event is processed separately (Storm)
• Windows limits is defined based on:

▶ Amount of data received
▶ Time
▶ Activity (concept of sessions)

2 reference times co-exists in the system

• Event time: time at which the events happened
• Processing time: time at which the events are processed

▶ Most systems build windows based on the processing time
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About the notion of time

Window type

• Tumbling window: Fixed-size window, each event belongs to
one window

• Hopping window: Fixed-size window, windows overlap
▶ hop size = time between the generation of two windows
▶ hop size < window size

• Sliding window: Fixed-size window
▶ A new window is considered at each time step

• Session window: No fix size, group together events that
happened closely together in time
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Spark Streaming

Based on micro-batches
• The data stream is divided into micro-batches

▶ Tumbling windows
▶ Typically 1 to 4 seconds

• Each micro-batch is a RDD
• Multiple receivers can be created to manipulate multiple data
streams in parallel
▶ The receiver tasks are distributed over the workers
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The Lambda architecture
source https://www.oreilly.com/ideas/questioning-the-lambda-architecture
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The Lambda architecture

Motivations
• Combination of batch processing and stream processing in a
single architecture
▶ Stream processing allows building fast (approximate) views of

the data
▶ Batch processing is used for more complex (and accurate) data

analysis

Limits
Architecture becoming less popular (lambda-less architecture)

• Maintaining two code bases is costly
• Processing engines start allowing doing both (Spark, Flink)

▶ Stream processing engines are becoming more mature, they
allow running more complex computations

▶ Log-based message brokers allow processing the same record
multiple times
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Additional references

Mandatory reading

• https://www.oreilly.com/ideas/

the-world-beyond-batch-streaming-101, T. Akidau,
2015.

Suggested reading

• Apache Flink: Stream and Batch Processing in a Single
Engine., P. Carbone et al., IEEE, 2015.

• https://www.oreilly.com/ideas/

questioning-the-lambda-architecture, J. Kreps, 2014.
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