
Data Management in Large-Scale Distributed
Systems

Apache Spark

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

http://tropars.github.io/

2022

1

mailto:thomas.ropars@univ-grenoble-alpes.fr
http://tropars.github.io/


References

• The lecture notes of V. Leroy

• The lecture notes of Y. Vernaz

2



In this course

• The basics of Apache Spark

• Spark API

• Start programming with PySpark

3



Agenda

Introduction to Apache Spark

Spark internals

Programming with PySpark

Additional content

4



Apache Spark

• Originally developed at Univ. of California

• Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing, M. Zaharia et al. NSDI, 2012.

• One of the most popular Big Data project today.

5



Motivations

Limitations of Hadoop MapReduce

• Limited performance for iterative algorithms
▶ Data are flushed to disk after each iteration
▶ More generally, low performance for complex algorithms

Main novelties of Spark

• Computing in memory

• A new computing abstraction: Resilient Distributed Datasets
(RDD)

6



Motivations

Limitations of Hadoop MapReduce

• Limited performance for iterative algorithms
▶ Data are flushed to disk after each iteration
▶ More generally, low performance for complex algorithms

Main novelties of Spark

• Computing in memory

• A new computing abstraction: Resilient Distributed Datasets
(RDD)

6



Spark vs Hadoop

Spark added value

• Performance
▶ Especially for iterative algorithms

• Interactive queries

• Supports more operations on data

• A full ecosystem (High-level libraries)

• Running on your machine or at scale

7



Programming with Spark

Spark Core API

• Scala

• Python
• Java

Integration with storage systems

Works with any storage source supported by Hadoop

• Local file systems

• HDFS

• Cassandra

• Amazon S3

8



Many resources to get started

• https://spark.apache.org/

• https://sparkhub.databricks.com/

• Many courses, tutorials, and examples available online

9

https://spark.apache.org/
https://sparkhub.databricks.com/


Starting with Spark

Running in local mode

• Spark runs in a JVM
▶ Spark is coded in Scala

• Read data from your local file system

Use interactive shell
• Scala (spark-shell)

• Python (pyspark)

• Run locally or distributed at scale

10



A very first example with pyspark
Counting lines

11



The Spark Web UI

12



The Spark built-in libraries

• Spark SQL: For structured data (Dataframes)

• Spark Streaming: Stream processing (micro-batching)

• MLlib: Machine learning

• GraphX: Graph processing

13



Agenda

Introduction to Apache Spark

Spark internals

Programming with PySpark

Additional content

14



In-memory computing: Insights
See Latency Numbers Every Programmer Should Know

Memory is way faster than disks

Read latency

• HDD: a few milliseconds

• SDD: 10s of microseconds (100X faster than HDD)

• DRAM: 100 nanoseconds (100X faster than SDD)

15

https://gist.github.com/jboner/2841832


In-memory computing: Insights
Graph by P. Johnson

Cost of memory decreases = More memory per server

16



Efficient iterative computation

Hadoop: At each step, data go through the disks

Spark: Data remain in memory (if possible)

17



Main challenge

Fault Tolerance

Failure is the norm rather than the exception

On a node failure, all data in memory is lost

18



Resilient Distributed Datasets

Restricted form of distributed shared memory

• Read-only partitioned collection of records

• Creation of a RDD through deterministic operations
(transformations) on
▶ Data stored on disk
▶ an existing RDD

19



Transformations and actions

Programming with RDDs

• An RDD is represented as an object

• Programmer defines RDDs using Transformations
▶ Applied to data on disk or to existing RDDs
▶ Examples of transformations: map, filter, join

• Programmer uses RDDs in Actions
▶ Operations that return a value or export data to the file system
▶ Examples of actions: count, reduce

20



Fault tolerance with Lineage

Lineage = a description of an RDD

• The data source on disk
• The sequence of applied transformations

▶ Same transformation applied to all elements
▶ Low footprint for storing a lineage

Fault tolerance
• RDD partition lost

▶ Replay all transformations on the subset of input data or the
most recent RDD available

• Deal with stragglers
▶ Generate a new copy of a partition on another node

21



Spark runtime
see https://spark.apache.org/docs/latest/cluster-overview.html

22

https://spark.apache.org/docs/latest/cluster-overview.html


Spark runtime
• Cluster Manager: The system in charge of allocating resources
to applications

• Worker nodes: Nodes of the cluster on which the Spark
applications are run

• Driver: Main program of a spark application
▶ Created when an application is submitted
▶ Translates the user’s program into a graph of tasks
▶ Assigns tasks to executors

• Executor: A dedicated process (a new JVM) created on a
worker to execute an application
▶ Created when an application is submitted

• By default a Spark apps tries to use all resources of the cluster
• One executor per worker – An executor uses all cores of the

worker

▶ Can include multiple executor threads
▶ Execute tasks on partitions

23



Partitioning
See https://spark.apache.org/docs/latest/rdd-programming-guide.html#

parallelized-collections

Partitions are the unit of parallelism in Spark

• RDDs are divided into partitions

• To execute an operation on a RDD, a task per partition is
created

• Tasks can be executed in parallel

Partitions and executors
• All items of one partition are on the same executor

• An executor can process multiple partitions

24

https://spark.apache.org/docs/latest/rdd-programming-guide.html#parallelized-collections
https://spark.apache.org/docs/latest/rdd-programming-guide.html#parallelized-collections


More on partitioning
See https://luminousmen.com/post/spark-partitions

Number of partitions

• RDDs are automatically partitioned based on the
configuration of the target platform (nodes, CPUs)
▶ As many partitions as the number of available cores

• If the input data are already partitioned:
▶ Same number of partitions as in the input data
▶ Example: RDD from HDFS file – 1 partition per HDFS block

• The number of partitions in a RDD can be changed by the
programmer
▶ repartition(): change the number of partitions
▶ coalesce(): merge partitions

25

https://luminousmen.com/post/spark-partitions


Distribution of data in partitions

Two default partitioners

• Range partitioner
▶ Default partitioner for raw data
▶ Consecutive items are put in the same partition

• Hash partitioner
▶ Applied after ”ByKey” operations
▶ partition = key .hashCode() mod numPartitions

• The user can define its own partitioning function

26



RDD dependencies

Transformations create dependencies between RDDs.

2 kinds of dependencies

• Narrow dependencies
▶ Each partition in the parent is used by at most one partition in

the child

• Wide (shuffle) dependencies
▶ Each partition in the parent is used by multiple partitions in

the child

Impact of dependencies

• Scheduling: Which tasks can be run independently

• Fault tolerance: Which partitions are needed to recreate a lost
partition

27



RDD dependencies
Figure by M. Zaharia et al

28



Executing transformations and actions

Lazy evaluation

• Transformations are executed only when an action is called on
the corresponding RDD

• Examples of optimizations allowed by lazy evaluation
▶ Read file from disk + action first(): no need to read the

whole file
▶ Read file from disk + transformation filter(): No need to

create an intermediate object that contains all lines

29



About shuffle operations

Costly operations

• Triggered by:
▶ ByKey operations
▶ repartition operations
▶ etc.

• May involves significant communication over the network

• Involves disk I/O operations
▶ In each source partition, data split by destination partitions are

saved to disk.
▶ Purpose: limit the number of operations to re-execute in case

of crash

30



Job scheduling

Main ideas
• Tasks are run when the user calls an action

• A Directed Acyclic Graph (DAG) of transformations is built
based on the RDD’s lineage

• The DAG is divided into stages. Boundaries of a stage defined
by:
▶ Wide dependencies
▶ Already computed RDDs

• Tasks are launched to compute missing partitions from each
stage until target RDD is computed
▶ Data locality is taken into account when assigning tasks to

workers

31



Stages in a RDD’s DAG
Figure by M. Zaharia et al

Cached partitions in black
32



Persist a RDD
See https:

//spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence

Main idea
• By default, a RDD is recomputed for each action run on it.

• A RDD can be cached in memory calling persist() or
cache()
▶ Useful is multiple actions to be run on the same RDD

(iterative algorithms)
▶ Can lead to 10X speedup
▶ Note that a call to persist does not trigger transformations

evaluation
▶ cache() means that data have to be persisted in memory

33

https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence
https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence


Persist a RDD
See https:

//spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence

Different options

• MEMORY ONLY: RDDs stored in memory as deserialized objects
(default)

• MEMORY AND DISK: Move data to disk if not enough space in
memory

• MEMORY ONLY SER: serialize data

• etc.

34

https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence
https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence


Agenda

Introduction to Apache Spark

Spark internals

Programming with PySpark

Additional content

35



The SparkContext

What is it?
• Object representing a connection to an execution cluster

• We need a SparkContext to build RDDs

Creation
• Automatically created when running in shell (variable sc)

• To be initialized when writing a standalone application

Initialization
• Run in local mode with nb threads = nb cores: local[*]

• Run in local mode with 2 threads: local[2]

• Run on a spark cluster: spark://HOST:PORT

36



The SparkContext

Python shell

$ pyspark --master local[*]

Python program

import pyspark

sc = pyspark.SparkContext("local[*]")

37



The first RDDs

Create RDD from existing iterator

• Use of SparkContext.parallelize()

• Optional second argument to define the number of partitions

data = [1, 2, 3, 4, 5]

distData = sc.parallelize(data, 2)

Create RDD from a file
• Use of SparkContext.textFile()

data = sc.textFile("myfile.txt")

hdfsData = sc.textFile("hdfs://myhdfsfile.txt")

38



Some transformations
see https:

//spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

• map(f): Applies f to all elements of the RDD. f generates a single
item

• flatMap(f): Same as map but f can generate 0 or several items

• filter(f): New RDD with the elements for which f returns true

• union(other)/intersection(other): New RDD being the
union/intersection of the initial RDD and other .

• cartesian(other): When called on datasets of types T and U, returns
a dataset of (T, U) pairs (all pairs of elements)

• distinct(): New RDD with the distinct elements

• repartition(n): Reshuffle the data in the RDD randomly to create
either more or fewer partitions and balance it across them

39

https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations


Some transformations with <K,V> pairs

• groupByKey(): When called on a dataset of (K, V) pairs, returns a
dataset of (K, Iterable<V>) pairs.

• reduceByKey(f): When called on a dataset of (K, V) pairs, Merge
the values for each key using an associative and commutative
reduce function.

• aggregateByKey(): see documentation

• join(other): Called on datasets of type (K, V) and (K, W), returns a
dataset of (K, (V, W)) pairs with all pairs of elements for each key.

40



Some actions
see
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

• reduce(f): Aggregate the elements of the dataset using f (takes two
arguments and returns one).

• collect(): Return all the elements of the dataset as an array.

• count(): Return the number of elements in the dataset.

• take(n): Return an array with the first n elements of the dataset.

• takeSample(): Return an array with a random sample of num
elements of the dataset.

• countByKey(): Only available on RDDs of type (K, V). Returns a
hashmap of (K, Int) pairs with the count of each key.

• foreach(f): Run function f on each element (f usually has side
effects such as writing to external storage)

41

https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions


An example

from pyspark.context import SparkContext

sc = SparkContext("local")

# define a first RDD

lines = sc.textFile("data.txt")

# define a second RDD

lineLengths = lines.map(lambda s: len(s))

# Make the RDD persist in memory

lineLengths.cache()

# At this point no transformation has been run

# Launch the evaluation of all transformations

totalLength = lineLengths.reduce(lambda a, b: a + b)

42



An example with key-value pairs

lines = sc.textFile("data.txt")

pairs = lines.map(lambda s: (s, 1))

counts = pairs.reduceByKey(lambda a, b: a + b)

# Warning: sortByKey implies shuffle

result = counts.sortByKey().collect()

43



Another example with key-value pairs

rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])

# mapValues applies f to each value

# without changing the key

sorted(rdd.groupByKey().mapValues(len).collect())

# [(’a’, 2), (’b’, 1)]

sorted(rdd.groupByKey().mapValues(list).collect())

# [(’a’, [1, 1]), (’b’, [1])]

44



About distributed execution
see https://spark.apache.org/docs/latest/rdd-programming-guide.html#

understanding-closures-

1 counter = 0

2 rdd = sc.parallelize(data)

3
4 def increment_counter(x):

5 global counter

6 counter += x

7
8 rdd.foreach(increment_counter)

9
10 print("Counter␣value:␣", counter) # displays 0

What is the problem?

• We have multiple JVMs, and so, multiple counter variables
▶ counter in lines 1 and 10 is in the JVM of the driver
▶ In lines 5 and 8, we create one counter per executor JVM

45

https://spark.apache.org/docs/latest/rdd-programming-guide.html#understanding-closures-
https://spark.apache.org/docs/latest/rdd-programming-guide.html#understanding-closures-


About distributed execution
see https://spark.apache.org/docs/latest/rdd-programming-guide.html#

understanding-closures-

1 counter = 0

2 rdd = sc.parallelize(data)

3
4 def increment_counter(x):

5 global counter

6 counter += x

7
8 rdd.foreach(increment_counter)

9
10 print("Counter␣value:␣", counter) # displays 0

What is the problem?

• We have multiple JVMs, and so, multiple counter variables
▶ counter in lines 1 and 10 is in the JVM of the driver
▶ In lines 5 and 8, we create one counter per executor JVM

45

https://spark.apache.org/docs/latest/rdd-programming-guide.html#understanding-closures-
https://spark.apache.org/docs/latest/rdd-programming-guide.html#understanding-closures-


Shared Variables

Accumulator
• Use-case: Accumulate values over all tasks
• Declare an Accumulator on the driver

▶ Updates by the tasks are automatically propagated to the
driver.

• Default accumulator: operator ’+=’ on int and float.
▶ User can define custom accumulator functions

46



Example with an Accumulator

file = sc.textFile(inputFile)

# Create Accumulator[Int] initialized to 0

blankLines = sc.accumulator(0)

def splitLine(line):

# Make the global variable accessible

global blankLines

if not line:

blankLines += 1

return line.split("␣")

words = file.flatMap(splitLine)

print(blankLines.value)

47



Additional references

Mandatory reading

• Chapter 5 on Large-Scale Dataflow Engines of the redbook
(Readings in Database Systems, 5th Edition), P. Bailis, J.
Hellerstein, M. Stonebraker –
http://www.redbook.io/ch5-dataflow.html

48

http://www.redbook.io/ch5-dataflow.html


Agenda

Introduction to Apache Spark

Spark internals

Programming with PySpark

Additional content

49



Shared Variables
see https://spark.apache.org/docs/latest/rdd-programming-guide.html#

shared-variables

Broadcast variables
• Use-case: A read-only large variable should be made available
to all tasks (e.g., used in a map function)

• Costly to be shipped with each task
• Declare a broadcast variable

▶ Spark will make the variable available to all tasks in an
efficient way

50

https://spark.apache.org/docs/latest/rdd-programming-guide.html#shared-variables
https://spark.apache.org/docs/latest/rdd-programming-guide.html#shared-variables


Example with a Broadcast variable

b = sc.broadcast([1, 2, 3, 4, 5])

print(b.value)

# [1, 2, 3, 4, 5]

print(sc.parallelize([0, 0]).

flatMap(lambda x: b.value).collect())

# [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

b.unpersist()

51


	Introduction to Apache Spark
	Spark internals
	Programming with PySpark
	Additional content

