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In this course

• History of MapReduce

• Overview of the Hadoop Eco-system

• Description of HDFS and Hadoop MapReduce

• Our first MapReduce programs
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Agenda

Introduction to MapReduce

The Hadoop Eco-System

HDFS

Hadoop MapReduce
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MapReduce at Google

Publication
• The Google file system, S. Ghemawat et al. SOSP 2003.

• MapReduce: simplified data processing on large clusters, J.
Dean and S. Ghemawat. OSDI 2004.

Main ideas
• Data represented as key-value pairs

• Two main operations on data: Map and Reduce
• A distributed file system

▶ Compute where the data are located
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Use of MapReduce at Google

• Used to implement several tasks:
▶ Building the indexing system for Google Search
▶ Extracting properties of web pages
▶ Graph processing
▶ etc.

• Google does not use MapReduce anymore1

▶ Moved on to more efficient technologies
• We will study BigTable (data storage) in this course

▶ The main principles are still valid

1https://www.datacenterknowledge.com/archives/2014/06/25/

google-dumps-mapreduce-favor-new-hyper-scale-analytics-system
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MapReduce

The Map operation

• Transformation operation
▶ A function is applied to each element of the input set

• map(f )[x0, ..., xn] = [f (x0), ..., f (xn)]

• map(∗2)[2, 3, 6] = [4, 6, 12]

The Reduce operation

• Aggregation operation (fold)

• reduce(f )[x0, ..., xn] = [f ((x0), f ((x1), ..., f (xn−1, xn)))]

• reduce(+)[2, 3, 6] = (2 + (3 + 6)) = 11

• In MapReduce, Reduce is applied to all the elements with the
same key
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Why MapReduce became very popular?

Main advantages

• Simple to program

• Scales to large number of nodes
▶ Targets scale out (share-nothing) infrastructures

• Handles failures automatically
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Simple to program

Provides a distributed computing execution framework

• Simplifies parallelization
▶ Defines a programming model
▶ Handles distribution of the data and the computation

• Fault tolerant
▶ Detects failures
▶ Automatically takes corrective actions

• Code once (expert), benefit to all

Limits the operations that a user can run on data

• Inspired from functional programming (MapReduce)
• Allows expressing several algorithms

▶ But not all algorithms can be implemented in this way
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Scales to large number of nodes

Data parallelism

• Running the same task on different (distributed) data pieces
in parallel.

• As opposed to Task parallelism that runs different tasks in
parallel (e.g., in a pipeline)

Move the computation instead of the data

• The distributed file system is central to the framework
▶ GFS in the case of Google
▶ Heavy use of partitioning

• The tasks are executed where the data are stored
▶ Moving data is costly
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Fault tolerance

Motivations
• Failures are the norm rather than the exception1.

▶ In Google datacenters, jobs can be preempted at any time

▶ MapReduce jobs have low priority and have high chances of
being preempted

• A 1-hour task has 5% chances of being preempted

• Dealing with stragglers (slow machines)

1The Google file system, S. Ghemawat et al, 2003
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Fault tolerance

Mechanisms
• Data are replicated in the distributed file system

• Results of computation are written to disk

• Failed tasks are re-executed on other nodes

• Tasks can be executed multiple times in parallel to deal with
stragglers
▶ Towards the end of a computation phase
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A first MapReduce program
Word Count

Description

• Input: A set of lines including words
▶ Pairs < line number, line content >
▶ The initial keys are ignored in this example

• Output: A set of pairs < word, nb of occurrences >

Input

• < 1, ”aaa bb ccc” >

• < 2, ”aaa bb” >

Output

• < ”aaa”, 2 >

• < ”bb”, 2 >

• < ”ccc”, 1 >
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A first MapReduce program
Word Count

map(key, value): /* pairs of {line num, content} */

foreach word in value.split():

emit(word, 1)

reduce(key, values): /* {word, list nb occurences} */

result = 0

for value in values:

result += value

emit(key, result) /* -> {word, nb occurences} */
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A first MapReduce program
Word Count

1, ”aaa bb ccc”

2, ”bb bb d”

3, ”d aaa bb”

4, ”d”

map

”aaa”, 1

”bb”, 1

”ccc”, 1

”bb”, 1

”bb”, 1

”d”, 1

”d”, 1

”aaa”, 1

”bb”, 1

”d”, 1

reduce

”aaa”, 2

”bb”, 4

”ccc”, 1

”d”, 3

Question:

How is it implemented in a distributed environment? (stay
tuned)
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Example: Web index

Description

Construct an index of the pages in which a word appears.

• Input: A set of web pages
▶ Pairs < URL, content of the page >

• Output: A set of pairs < word, set of URLs >

16



Example: Web index

map(key, value): /* pairs of {URL, page_content} */

foreach word in value.parse():

emit(word, key)

reduce(key, values): /* {word, URLs} */

list=[]

for value in values:

list.add(value)

emit(key, list) /* {word, list of URLs} */
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About batch and stream processing

Batch processing

• A batch processing system takes a large amount of input data,
runs a job to process it, and produces some output data.

• Offline system
▶ All inputs are already available when the computation starts

• In this lecture, we are discussing batch processing.

Stream processing

• A stream processing system processes data shortly after they
have been received

• Near real-time system
• The amount of data to process is unbounded

▶ Data arrives gradually over time
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Introduction to MapReduce

The Hadoop Eco-System

HDFS

Hadoop MapReduce

19



Apache Hadoop
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History

Open source implementation of a MapReduce framework

• Implemented by people working at Yahoo!

• Inspired from the publications of Google

• Released in 2006

Evolution
• A full ecosystem
• Used by many companies

▶ Facebook Big Data stack is still inspired by (and even making
use of) Hadoop1

1https://www.datanami.com/2020/08/31/

how-facebook-accelerates-sql-at-extreme-scale/
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Hadoop evolution
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The Hadoop ecosystem

The main blocks
• HDFS: The distributed file system

• Yarn: The cluster resource manager

• MapReduce: The processing engine

Other blocks
• Hive: Provide SQL-like query language

• Pig: High-level language to create MapReduce applications
▶ Notion of Pipeline

• Giraph: Graph processing

• etc.
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A few words about Yarn
A resource management framework

• Dynamically allocates the resources of a cluster to jobs

• Allows multiple engines to run in parallel on the cluster
▶ Not all jobs have to be MapReduce jobs
▶ Increases resource usage

• Main components of the system
▶ ResourceManager: Allocates resources to applications and

monitors the available nodes

▶ ApplicationMaster: Negotiates resources access for one
application with the RM; Coordinates the application’s tasks
execution

▶ The NodeManager: Launches tasks on nodes and monitors
resource usage

• Has been replaced by other frameworks (Mesos, Kubernetes)
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Hadoop Distributed File System

Purpose

Store and provide access to large datasets in a share-nothing
infrastructure

Challenges

• Scalability

• Fault tolerance

Example of large scale deployment

• At Yahoo!: 600PB of data on 35K servers1

1http:

//yahoohadoop.tumblr.com/post/138739227316/hadoop-turns-10
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Target infrastructure (recall)
Cluster of commodity machines

Switch

: storage : memory : processor
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Main principles
Achieving scalability and fault tolerance

Main assumptions

• Storing large datasets
▶ Provide large aggregated bandwidth
▶ Allow storing large amount of files (millions)

• Batch processing (i.e., simple access patterns)
▶ The file system is not POSIX-compliant
▶ Assumes sequential read and writes (no random accesses)

• Write-once-read-many file accesses
• Supported write operations: Append and Truncate
• Stream reading

• Optimized for throughput (not latency)
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Random	vs	Sequen)al	disk	access	
•  Example	

–  DB	100M	users	
–  100B/user	
–  Alter	1%	records	

•  Random	access	
–  Seek,	read,	write:	30mS	
–  1M	users	à	8h20	

•  Sequen)al	access	
–  Read	ALL	Write	ALL	
–  2x	10GB	@	100MB/S	à	3	minutes	

	
à	It	is	o�en	faster	to	read	all	and	write	all	sequen)ally	
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Main principles
Achieving scalability and fault tolerance

Partitioning

• Files are partitioned into blocks

• Blocks are distributed over the nodes of the system

• Default block size in recent versions: 128MB

Replication

• Multiple replicas of each block are created

• Replication is topology aware (rack awareness)

• Default replication degree is 3
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A Master-Slave architecture

A set of DataNodes
• One daemon per node in the system
• A network service allowing to access the file blocks stored on
that node
▶ It is responsible for serving read and write requests

One NameNode
• Keeps track of where blocks are stored

• Monitors the DataNodes

• Entry point for clients
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HDFS architecture
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Writing a file: Summary
1. The client contacts the NameNode to request new file

creation
▶ The NameNode makes all required checks (Permissions, file

does not exists, etc.)

2. The NameNode allows the client to write the file

3. The client splits the data to be written into blocks
▶ For each block, it asks the NameNode for a list of destination

nodes
▶ The returned list is sorted in increasing distance from the client

4. Each block is written in a pipeline
▶ The client picks the closest node to write the block
▶ The DataNode receives the packets (portions) and forwards

them to the next DataNode in the list

5. Once all blocks have been created with a sufficient replication
degree, the client acknowledges file creation completion to the
name node.

6. The NameNode flushes information about the file to disk
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Reading a file
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Reading a file: Summary

1. The client contacts the NameNode to have info about a file

2. The NameNode returns the list of all blocks
▶ For each block, it provides a list of nodes hosting the block
▶ The list is sorted according to the distance from the client

3. The client can start reading the blocks sequentially in order
▶ By default, contacts the closest DataNode
▶ If the node is down, contacts the next one in the list
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Supported file formats

• Text/CSV files

• JSON records

• Sequence files (binary key-value pairs)
▶ Can be used to store photos, videos, etc

• Defining custom formats
▶ Avro
▶ Parquet
▶ ORC
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In a Nutshell

A distributed MapReduce framework

• Map and Reduce tasks are distributed over the nodes of the
system

• Runs on top of HDFS
▶ Move the computation instead of the data

• Fault tolerant

2 main primitives

• Map (transformation)

• Reduce (aggregation)
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In a nutshell

Key/Value pairs

• MapReduce manipulate sets of Key/Value pairs

• Keys and values can be of any types

Functions to apply

• The user defines the functions to apply

• In Map, the function is applied independently to each pair

• In Reduce, the function is applied to all values with the same
key
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MapReduce operations

About the Map operation

• A given input pair may map to zero, one, or many output pairs

• Output pairs need not be of the same type as input pairs

About the Reduce operation

• Applies operation to all pairs with the same key
• 3 steps:

▶ Shuffle and Sort: Groups and merges the output of mappers by
key

▶ Reduce: Applies the reduce operation to the new key/value
pairs
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Distributed execution
Figure from
https://www.supinfo.com/articles/single/2807-introduction-to-the-mapreduce-life-cycle
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Distributed execution: the details

Map tasks

• As many as the number of blocks to process

• Executed on a node hosting a block (when possible)

• Data read from HDFS

Reduce tasks
• Number selected by the programmer

• Key-value pairs are distributed over the reducers using a hash
of the key

• The output is stored in HDFS
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Data management

Moving data from the Map to the Reduce tasks

1. Output of map tasks are partitioned. The result is stored
locally
▶ As many partitions are created as the number of reducers
▶ By default, a partitioning function based on the hash of the

key is used
▶ The user can specify its own partitioning function

2. The reducers fetch the data from the map tasks
▶ They connect to the map nodes to fetch data (shuffle)
▶ This can start as soon as some map tasks finish (customizable)

3. The reducers sort the data by key (sort)
▶ Can start only when all map tasks are finished
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Reducing the amount of data transferred

Combiner
• User-defined function for local aggregation on the map tasks

• Applied after the partitioning function
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2, ”aa aa”

1, ”bb bb”
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map

map
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node B
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re
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node C
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About more complex programs
Workflows

Sequence of Map and Reduce operations

• The output of one job is the input of the next job
• Example: Getting the word that occurs to most often in a text

▶ Job 1: counting the number of occurrence of each word
▶ Job 2: Find the word with the highest count

Implementation

• No specific support in Hadoop

• Data simply go through HDFS
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Additional references

Mandatory reading (preparation for next course)

• Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing, M. Zaharia et al. NSDI, 2012.

Suggested reading

• Chapter 10 of Designing Data-Intensive Applications by
Martin Kleppmann

• HDFS Carton: https://wiki.scc.kit.edu/
gridkaschool/upload/1/18/Hdfs-cartoon.pdf

• MapReduce illustration: https:
//words.sdsc.edu/words-data-science/mapreduce
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