
Lecture notes: Studying distributed systems – Atomic Broadcast

M2 MOSIG: Large-Scale Data Management and Distributed Systems

Thomas Ropars

2023

This lecture studies the atomic broadcast communication primitive (also sometimes called, total-
order broadcast). 1.

1 Motivation

The atomic broadcast communication primitive is a group communication primitive, as the other
broadcast primitives studied in a previous lecture. Compared to reliable broadcast primitives studied
earlier, it orders all messages, even those from different senders.

Atomic broadcast is an important abstraction as it is necessary to implement active replication:
it is used to ensure consistency between multiple active replicas that are used to implement a logical
service, and whose behavior can be captured by a deterministic state machine.

2 Definition of atomic broadcast

Before defining atomic broadcast, we recall the definition of reliable broadcast.

2.1 Reliable broadcast

We introduced (Regular) Reliable Broadcast and Uniform Reliable Broadcast abstractions in a
previous lecture. Both abstractions share the same integrity and validity properties, and only differ
in their agreement properties (Uniform reliable broadcast implements uniform agreement):

• Integrity: Each process delivers message m at most once, and only if was broadcasted by some
process.

• Validity: If a correct process broadcasts a message m, then every correct process eventually
delivers m.

• Agreement: If a message m is delivered by some correct process, then m is eventually delivered
by every correct process.

1Acknowledgments: Parts of these notes are strongly inspired by the lectures notes of Andre Schiper on Distributed
Algorithms.

1



• Uniform Agreement: If a message m is delivered by some process (whether correct or not),
then m is eventually delivered by every correct process.

In the following, we assume that reliable broadcast implements two primitives:

• rbcast(m) is called by a process that wants to broadcast a message

• rdeliver(m) is called by the broadcast abstraction to deliver a message to the application layer.

2.2 Atomic broadcast

Atomic broadcast is formally defined by the primitives abcast and adeliver, which satisfy the valid-
ity, uniform agreement, integrity properties of reliable broadcast, and the following uniform order
property:2

• Uniform total order: If some process (correct of faulty) adelivers m before m′, then every
process adelivers m′ only after it has adelivered m.

The name atomic broadcast relates to the fact that the Uniform total order property makes the
delivery of messages appear as one atomic action. A message is delivered to all or to none of the
processes and, if the message is delivered, every other message is ordered either before or after this
message.

3 Impossibility result

Before discussing the implementation of atomic broadcast, we show that atomic broadcast is also
subject to the FLP impossibility result. The proof is by contradiction: we show that if atomic
broadcast is solvable, then consensus is also solvable, which contradicts the FLP impossibility result.

To show that atomic broadcast solvable implies consensus solvable, consider consensus to be
solved among a set Π of processes:

• ∀pi ∈ Π, let vi be the initial value of pi;

• ∀pi ∈ Π, process pi executes abcast(vi);

• ∀pi ∈ Π, let v be the first value adelivered by pi: process pi decides v.

By the ordering property of atomic broadcast, all processes decide the same value, i.e., consensus
is solved. This shows the contradiction.

Therefore, there exists no deterministic algorithm that solves atomic broadcast in an asyn-
chronous system with reliable channels if one single process may crash.

2Actually the primitive should be called uniform atomic broadcast. Atomic broadcast is defined by the corre-
sponding non-uniform properties. To simplify, we use the name “atomic broadcast” to actually mean “uniform atomic
broadcast”.

2



4 Modular implementation of atomic broadcast

In this section, we present a modular implementation of atomic broadcast. We call it modular
because it uses consensus as a black box.

Said differently, the modular implementation is based on the notion of reduction. Let P1, P2 be
two problems. P1 is reducible to P2 if the solution for P2 yields a solution for P1.

A reduction applies in some system model. The reduction of atomic broadcast (problem P1)
to consensus (problem P2) applies in an asynchronous system with quasi-reliable channels. The
solution has been proposed by Chandra and Toueg [1]. The reduction uses the reliable broadcast
primitive.

4.1 Reduction of atomic broadcast to consensus

We now describe the reduction of atomic broadcast to consensus in an asynchronous system with
quasi-reliable channels [1].3

The idea is the following. Every process executes a sequence of consensus numbered 1, 2, . . ..
The initial value and the decision of each consensus instance is a set of messages (the messages that
have to be ordered). Let msgk be the set of messages decided by consensus #k:

• Each process adelivers the messages in msgk before the messages in msgk+1.

• Each process adelivers the messages in msgk in some deterministic order (e.g., according to
their IDs).

The algorithm that uses Consensus is given by Figure 1. The execution of abcast(m) by pi
leads first to rbcast(m) (line 14). Process pi starts a new instance of consensus whenever there are
messages that have been rdelivered but not adelivered (line 19). The initial value of pi for each
instance of consensus is the set of messages that pi has rdelivered but not adelivered (line 22).

Note that Algorithm 1 does not launch one instance of consensus for every execution of ab-
cast(m): more than one message may be adelivered by one instance of consensus.

Equivalence of atomic broadcast and consensus Let P1, P2 be two problems. If P1 is reducible
to P2 and P2 is reducible to P1, the two problems are said to be equivalent (from a solvability point
of view).

The solution presented in this section shows that atomic broadcast is reducible to consensus in
an asynchronous system with quasi-reliable channels. The discussion in Section 3 was presenting a
solution showing that consensus is reducible to atomic broadcast. It follows that, from a solvability
point of view, consensus and atomic broadcast are equivalent in an asynchronous system with
quasi-reliable channels.

5 Leader-based implementation of atomic broadcast

We present now a non-modular implementation of atomic broadcast. The algorithm is non-modular
in the sense that it does not use consensus as a black box. The algorithm assumes quasi-reliable
channels, and is not expressed in the round model.

3Asynchronous system and quasi-reliable channels are for the reduction. Consensus of course needs a stronger
system model.

3



1 Implements:
2 AtomicBroadcast, instance ab.

4 Uses:
5 ReliableBroadcast, instance rb
6 Consensus, instance c

8 Variables:
9 ki = 0 # Consensus number

10 adeliveredi = ∅ # set of messages adelivered by pi
11 rdeliveredi = ∅ # set of messages rdelivered by pi

13 Upon ab.broadcast(m): # abcast(m)
14 rb.broadcast(m)

16 Upon rb.deliver(m):
17 rdeliveredi = rdeliveredi ∪m

19 Upon rdeliveredi − adeliveredi ̸= ∅:
20 ki = ki + 1
21 a_undelivered := rdeliveredi − adeliveredi
22 c.propose(ki, a_undelivered) # Start of consensus instance ki

23 Wail until c.decide(ki, msgki) # msgki is the decision (a set of messages)

24 for all m ∈ msgki: # iterate through the msgs in a deterministic order
25 ab.adeliver(m)
26 adeliveredi := adeliveredi ∪msgki

Figure 1: Implementation of Atomic Broadcast.

The algorithm we describe is basically Lamport’s MultiPaxos algorithm [2]. The algorithm is
based on a sequencer process s responsible for ordering messages. To abcast message m, a process
sends m to s. Upon receiving m, the sequencer s assigns a sequence number i to m, and sends (m, i)
to the destination processes4. The latter then deliver messages according to the sequence numbers5.

This simple idea needs to be completed to handle the crash of the sequencer. We only sketch
the solution and do not discuss the details. To understand the issues to be addressed, consider the
following scenario:

• The sequencer has received message m, assigned sequence number i to m, and has sent (m, i)
to the destinations. One destination process p receives (m, i) and delivers m at rank i.

• The sequencer crashes, and no other destination process receives (m, i).

The crash of s requires to select a new sequencer s′ among the remaining processes. However, if
s′ has not received (m, i), it might assign the sequence number i to some other message m′, leading
to the violation of the properties of atomic broadcast.

To address this problem, a process p that (i) has delivered message m′ with sequence number i−1,
and (ii) receives (m, i), does not adeliver m immediately. Let n be the total number of destinations,
and f the maximum number of faulty destinations. Process p adelivers m only once it knows that

4"Destination processes" refer to all processes involved in the group communication.
5In MultiPaxos the sequencer is called leader. This explains the reference to leader-based in the title of the section.

4



f+1 processes – i.e., one correct process – have received (m, i). This ensures that the new sequencer
s′ can learn that i has been assigned to m.

The following ensures that p adelivers m only after it knows that f + 1 processes have received
(m, i):

1. Each destination process, once it has received (m, i), sends an acknowledgement message
(ack,m, i) to all destinations.

2. Message m is adelivered by p only once p has received f + 1 messages (ack,m, i).6

This mechanism allows to handle the sequencer change as follows. When process p learns that
the new sequencer is s′, process p sends to s′ the set:

rcvp,s = {(m, i) | (m, i) received by p from s}.7

The sequencer s′ waits to receive rcvp,s from n− f processes p. If one single set rcvp,s received
by s′ contains some pair (m, i), then s′ knows that, if some message has been adelivered by one
process at rank i, it is message m. Moreover, if s′ receives no rcvp,s with (−, i′) ∈ rcvp,s, then no
process can have adelivered any message at rank i′.8

Some other issues need to be addressed. One issue is the selection of the new sequencer. A simple
technique is to rely on the rotating sequencer paradigm: the potential sequencers are ordered in a
circular list known to all; if the sequencer needs to be changed, the next process in the list is chosen.

The complete algorithm combines the ideas presented here with the LastVoting consensus al-
gorithm; the coordinator of LastVoting and the sequencer for atomic broadcast become the same
process.

References

[1] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM (JACM), 43(2):225–267, 1996.

[2] L. Lamport. The part-time parliament. In Concurrency: the Works of Leslie Lamport, pages
277–317. 2019.

6Waiting for f + 1 messages will not block p if f + 1 ≤ n− f , i.e., n > 2f .
7The information sent to s′ can be optimized.
8Assume that some message m′ is adelivered by some process at rank i′. Therefore, f + 1 processes p have sent

rcvp,s with (m′, i′) ∈ rcvp,s to s′. The sequencer s′ receives sets rcvp,s from n−f processes. Since (n−f)+(f+1) > n,
at least one set rcvp,s received by s′ contains (m′, i′).

5


