
Lecture notes: Studying distributed systems – Consensus

M2 MOSIG: Large-Scale Data Management and Distributed Systems

Thomas Ropars

2024

This lecture studies consensus in distributed systems1. Consensus is one of the most fundamental
problem in distributed systems.

For instance, consensus is required to implement active replication. Active replication is used
to made a service fault tolerant by creating multiple replicas of that service. Active replication
refers to replication techniques where all replicas are active and are able to process clients requests
(as opposed to passive replication). To guarantee that a client receives the same answer no matter
which replica answers its request, the only solution is that all replicas process all the requests from
all clients in the same order: They need to reach consensus on the order in which requests should
be processed.

As we will see soon, solving the consensus problem in a distributed system where some processes
may crash is a difficult problem.

1 Definition of consensus

In the consensus problem we consider a set of n processes, each process pi with an initial value vi.
These n processes have to agree on a common value v that is the initial value of one of the processes.

Formally, the consensus problem is defined by the primitives propose(vi) by which process pi
proposes its initial value, and decide(v) by which a process decides (irrevocably) on a value. The
decision must satisfy the following properties:

• Termination: Every correct process eventually decides.

• Validity: If a process decides v, then v is the initial value of some process (i.e., v was proposed
by some process).

• Uniform Agreement: Two processes cannot decide differently.

Validity and uniform agreement are safety properties, while termination is a liveness property.
1Acknowledgments: Parts of these notes are strongly inspired by the lectures notes of Andre Schiper on Distributed

Algorithms.

1

Remark: Uniform agreement has been defined above. The corresponding non-uniform property
is defined as follows:

• Agreement: Two correct processes cannot decide differently.

As discussed when studying reliable broadcast, the uniform property is what we are most often
looking for in practice. Hence, we consider uniform agreement in the following.

2 Impossibility results

In a distributed system, consensus can be solved only under certain conditions. We present below
some important impossibility results.

2.1 Simple impossibility result

We start with a simple impossibility result. We note f , the number of processes that may crash in
the system. We assume a crash-stop failure model for processes.

Theorem 1. Consensus cannot be solved in an asynchronous system with reliable channels if a
majority of processes may be faulty (f ≥ n/2).

The proof uses the “indistinguishable run” argument.

Indistinguishable run argument: Let R0 be a run of some (deterministic) algorithm A, in
which some process p has taken action a at time t. Let R1 be another run of A, such that (i) p’s
initial state is the same in R0 and R1, (ii) until t, process p observes the same environment (e.g.,
sequence of messages received) in R0 and R1. It follows that p has also taken action a at time t in
run R1.

This is because runs R0 and R1 of A are indistinguishable for p until time t, and since A is
deterministic, p does not behave differently in R0 and R1 until time t.

Proof. The proof of Theorem 1 is by contradiction. Suppose that algorithm A solves consensus in
the above system model. Partition the processes into two sets Π0 and Π1 such that Π0 contains
⌈n/2⌉ processes, and Π1 contains the remaining ⌊n/2⌋ processes.

Consider run R0 in which all processes propose 0. All processes in Π0 are correct, while all
processes in Π1 crash at the beginning of the run. By the validity property, all correct processes
decide 0 in R0. Consider q0 ∈ Π0 and let q0 decide at time t0.

Consider run R1 in which all processes propose 1. All processes in Π1 are correct, while all
processes in Π0 crash at the beginning of the run. This is possible since f ≥ n/2. By the validity
property, all processes decide 1 in R1. Consider q1 ∈ Π1 and let q1 decide at time t1.

We now construct a run R, in which no process crashes. In run R all processes in Π0 propose 0
and all processes in Π1 propose 1. In run R, the reception of all messages from Π0 to Π1 and from
Π1 to Π0 is delayed until time t = max(t0, t1); all other messages are received as in R0 resp. R1.
Therefore, until time t, R is indistinguishable from R0 for processes in Π0. So, in run R, process q0
decides 0 at time t0. Until time t, R is indistinguishable from R1 for processes in Π1. So, in run R,
process q1 decides 1 at time t1.

Therefore, in R some processes decide 0 and some other decide 1. This violates the agreement
property of consensus, i.e., shows the contradiction.

2

2.2 The FLP impossibility result

The above result puts restrictions on solving consensus in an asynchronous system. However, there
is a much more fundamental impossibility result, called the FLP impossibility result, established by
Fischer, Lynch and Paterson [6].

Theorem 2. There exists no deterministic algorithm that solves consensus in an asynchronous
system with reliable channels if one single process may crash.

The proof is complex, and will not be presented.
It is important to understand correctly this result. Solving some problem P, means solving P in

“all” runs compatible with the system model. It does not mean not being able to solve P in “any”
run. For example, consider the following simple algorithm for consensus in a system with three
processes p1, p2, p3:

• Process p1 sends its initial value v1 to all other processes, and decides v1:
• Processes p2 and p3 wait the initial value of p1, and upon reception decide on the value

received.

This algorithm solves consensus in runs in which p1 does not crash. However, this algorithm
does not solve consensus in all runs.

Intuition of the proof: The intuition behind the FLP impossibility result boils down to the fact
that in an asynchronous system, a process p cannot know whether a non-responsive process q has
crashed or if it just slow. If p waits for q, it might wait forever. If p does not wait and decides, it
might find out later that q took a different decision.

3 Consensus in a synchronous system

Because of the FLP impossibility result, to be able to solve consensus, we need to make additional
assumptions about the system. First, let us consider synchronous systems.

We start discussing the solution to consensus first in the synchronous system, and then in
the synchronous round model, an abstraction that can be implemented on top of the synchronous
system.

3.1 Consensus algorithm in a synchronous system

Flooding consensus To implement a consensus algorithm in a synchronous system, we assume
a perfect failure detector (which is trivially implemented in a synchronous system). We also rely
on quasi-reliable channels, and on the best-effort broadcast primitive introduced in the previous
lecture.

The solution presented in Figure 1 is called flooding consensus [1] and implements non-uniform
agreement. The basic idea of the algorithm is as follows. The algorithm executes in rounds. In each
round, each process floods the system with all proposed values it already knows (use of best-effort
broadcast – lines 22 and 46). If at the end of round, a process has collected all proposed values
by other processes that can possibly be seen, it decides by selecting one value from the set using a
deterministic function (lines 40-43).

The three main points to understand about this algorithm are:

3

1 Implements:
2 Consensus, instance c.

4 Uses:
5 BestEffortBroadcast, instance beb
6 PerfectFailureDetector, instance P

8 Variables:
9 correct = Π # The set of processes considered correct

10 round = 1
11 decision = ⊥
12 receivedfrom = [∅]N

13 W = [∅]N # The set of proposed values
14 receivedfrom[0] = Π

16 Upon event crash(q) raised by P:
17 correct = correct \ {q}
18 trydecide()

20 Upon c.propose(v):
21 W[1] = W[1] ∪ v
22 beb.broadcast([PROPOSAL, 1, W[1]])

24 Upon beb.deliver(p, [PROPOSAL, r, ps]):
25 receivedfrom[r] = receivedfrom[r] ∪ p
26 W[r] = W[r] ∪ ps
27 trydecide()

29 Upon beb.deliver(p, [DECIDED, v]):
30 if p ∈ correct and decision == ⊥:
31 decision = v
32 beb.broadcast([DECIDED, decision])
33 Trigger c.decide(decision)

35 Function roundFinishing():
36 return (correct ⊆ receivedfrom[round] and decision == ⊥)

38 Function tryDecide():
39 if roundFinishing():
40 if receivedfrom[round] == receivedfrom[round-1]:
41 decision = Min(W[round])
42 beb.broadcast([DECIDED, decision])
43 Trigger c.decide(decision)
44 else:
45 round = round + 1
46 beb.broadcast([PROPOSAL, round, W[round-1]])

Figure 1: Flooding consensus.

• A round finishes at process q when q has received a PROPOSAL message in that round from
every process that q has not been detected to have crash

• It is safe to decide in round r for process pi, if pi is sure that it has seen all values that other

4

processes might have in their proposals set. To be sure of this, it is not enough to finish a
round because one process pj might crash in the middle of a round, and process pi might have
not have received the message from pj while another process pk might. On the other hand, if
in two consecutive rounds r− 1 and r, the set receivedfrom is the same for pi, then all alive
processes in round r − 1 have sent their message to pi in round r and by the properties of
best-effort broadcast, and pi is sure that it has seen all possible values: it can decide (line 40).

• This algorithm only implements non-uniform agreement because pi might be the only process
in round r to have received a message from all alive processes in round r− 1 (another process
pl might have crashed in the middle of the round). Hence, pi might crash immediately after
deciding, and the remaining process might decide differently. Hence, we don’t have uniform
agreement.

Note that this algorithm might take up to N rounds to terminate if N − 1 processes crash one
by one, each in one round.

Uniform agreement with the flooding approach As we can see in Figure 1, expressing such
an algorithm based in rounds using an event-based representation, as we did for the broadcast
algorithm, can lead to a verbose and difficult-to-read code. Hence, we propose below another way
of presenting the algorithm. In this section, we study an algorithm that provides uniform agreement.

To simplify the presentation of the algorithm, we assume that the failure detector is accessible
through the predicate crashedp(q): the predicate is true if and only if p has detected the crash of
q.

We use the alternative description for the algorithm presented in Figure 2 that provides uniform
agreement. It still assumes quasi-reliable channels.

The parameter f represents the maximum number of processes that can crash. The algorithm
assumes f < n and consists of a loop that is executed f + 1 times. Every process p maintains a
set variable Wp that initially contains only p’s initial value. In each execution of the loop every
process p sends Wp to all other processes, and includes in Wp the values received. At line 52, p
stops waiting for a message from q if crashedp(q) holds (otherwise p would block forever). At the
end of loop f + 1 every process p decides on the smallest value in Wp.

47 Variables:
48 Wp = {vp} # set of proposed value, initially the singleton set with p’s proposed value

50 for ip in 1 to f + 1:
51 send [Wp, ip] to all processes
52 wait until ∀q ∈ Π :

(
(received a message (Wq, ip) from q) or (crashedp(q))

)
53 for all q from which the set Wq is received:
54 Wp = Wp ∪Wq

55 DECIDE(Min(Wp))

Figure 2: Flooding consensus with Uniform agreement

It is easy to see that Algorithm 2 satisfies validity. Termination follows from the fact that no
process is blocked forever at line 52. This follows from the quasi-reliable channels assumption.
Consider q sending a message to p at line 51. If q does not crash, its message is eventually received
by p. If q crashes, then crashedp(q) is eventually true.

5

Uniform agreement follows from the following lemma:

Lemma 3.1. Let us denote by Wp(i) the value of variable Wp at the end of loop i. If two processes
p and q both reach the end of round f + 1, then we have Wp(f + 1) = Wq(f + 1).

Proof. Since the loop is executed f +1 times and at most f processes can crash, there exist at least
one execution of the loop in which no process crashes. At the end of this execution of the loop, all
surviving processes have the same set Wp. This property trivially holds at the end of all subsequent
execution of the loop. Therefore all surviving processes have the same set Wp upon execution of
line 55.

3.2 Consensus in a synchronous round model

The synchronous round model is a computational model: It defines the way to write algorithms.
The synchronous round computational model has been introduced as a more convenient way to
express consensus algorithms in a synchronous system model.

The synchronous round model hides some low level details, and allows therefore a more con-
cise and simple algorithmic expression (see Figure 3). The synchronous round model be simply
implemented in a synchronous system2.

Round-based algorithm

Implementation of
synchronous rounds

Synchronous system

Synchronous rounds

Figure 3: Synchronous round model vs. synchronous system

In the synchronous round model the computation is divided into rounds of message exchange.
Each round r consists of a sending step, a receive step, and a state transition step:

1. In the sending step of round r, each process p sends a message to all processes.

2. In the receive step of round r, each process q receives all messages sent in round r by processes
that are alive (i.e., not crashed) at the end of round r (if p crashes in round r, its message of
round r might be received only by a subset of processes).
The receive step is implicit, i.e., it does not appear in the algorithm.

3. In the state transition step, each process p executes a state transition function, with the set
of messages received as parameter.

The synchronous round model allows us to slightly simplify the expression of Algorithm 2,
see Algorithm 4. The loop and the round number r are now implicit. The algorithm is called
FloodSet [8]. The sending step is denoted by Sr

p (sending step of p in round r), the receive step is
implicit, and the state transition step is denoted by T r

p .
2Describing how to implement synchronous round computational model in a synchronous system is outside the

scope of these lecture notes.

6

56 Variables:
57 Wp = {vp}

59 Round s:
60 Sr

p :
61 send (Wp) to all processes
62 T r

p :
63 for all q from which the set Wq is received:
64 Wp = Wp ∪Wq

65 if r == f+1:
66 DECIDE(Min(Wp))

Figure 4: FloodSet consensus algorithm (f < n)

4 Consensus in a partially synchronous system

The partially synchronous system model has been defined by Dwork, Lynch, and Stockmayer [5].
Roughly speaking a partially synchronous system is initially asynchronous and eventually becomes
synchronous. We first give a precise definition, and then we define the basic round model, a com-
putational model that can be implemented in a partially synchronous system. Finally we give
two consensus algorithms in the basic round model. For simplicity we do not show here how to
implement the basic round model in a partially synchronous model.

4.1 Partially synchronous system

In a synchronous system, processes and communication are synchronous. The partially synchronous
system distinguishes partial synchrony for processes and partial synchrony for communication. Two
versions of the definitions are given in [5]:

1. Unknown bound : There is a bound on the transmission delay of messages and a bound on the
process relative speed, but the values of these bounds are unknown (bounds depend on the
run).

2. Known bound ∆ and β hold eventually : There exist values ∆ and β with the following property:
For every run R, there is a time T such that the transmission delay of messages is bounded by
∆ and the process relative speed is bounded by β after T . Such a time T is called the Global
Stabilization Time (GST).

Channels can lose messages before GST , but are quasi-reliable after GST .

4.2 Basic round model: definition

As done for a synchronous system with the definition of the “synchronous round model”, we can
define a round model that can be implemented in the partially synchronous system, which allows us
to simplify the expression of consensus algorithms. This round model is called basic round model [5].

Similarly to the synchronous round model, the computation is divided into rounds, where each
round consists of a sending step, a receive step and a state transition step. The sending step and
the state transition step are similar in the synchronous round model and in the basic round model.

7

Round-based algorithm

Predicate Pbasic

Implementation of Pbasic

Partially synchronous system

Figure 5: Partially synchronous system and basic round model.

The difference between the synchronous round model and the basic round model is in the receive
step: in the basic round model, all messages from alive processes are guaranteed to be received only
from round GSR (Global Stabilization Round), which is the first round after GST . In other words,
channels can loose messages before round GSR, and are quasi-reliable for all rounds r ≥ GSR. This
can be expressed formally by the following predicate:

Pbasic :: ∃GSR > 0, s.t.∀r ≥ GSR, ∀p, q ∈ correct :

p sends m to q in round r ⇒ q receives m in round r,

where correct denotes the set of correct processes.
The predicate Pbasic is ensured by a lower layer algorithm (see Figure 5), which assumes an

underlying partially synchronous system. The implementation of Pbasic is not discussed in this
course.

4.3 OneThirdRule (OTR) algorithm (f < n/3)

We start with a simple consensus algorithm expressed in the basic round model. With f < n/3,
Algorithm 6 ensures validity and uniform agreement. Termination is ensured with predicate Pbasic.
The algorithm is very simple, but includes several clever mechanisms. The proof below will help
understanding these mechanisms.

67 Variables:
68 xp = {vp}

70 Round r:
71 Sr

p : # denotes the sending step of p in round r
72 send (xp) to all processes

74 T r
p : # denotes the state transition step of p in round r

75 if number of messages received ≥ n− f:
76 xp = most frequent value received (if more than one, take the smallest)
77 if at least n− f values received are equal to x:
78 DECIDE(x)

Figure 6: The OneThirdRule (OTR) algorithm (f < n/3) [4]

Validity trivially holds.

8

Proof of uniform agreement: Let r0 be the smallest round in which some process p decides v.
So p has received in round r0 at least n− f messages v, i.e., at least n− f processes have sent v.

Let q be another process that decides v′, also in round r0. So q has received in round r0 at least
n − f messages v′, i.e., at least n − f processes have sent v′. However, (n − f) + (n − f) > n if
f < n/3. Therefore, one process must have sent v and v′, i.e., v = v′. So p and q decide the same
value.

We prove now that in all rounds r ≥ r0, if some process updates xq (line 76), it updates xq to
v. We prove the result by contradiction.

Let r′ ≥ r0 be the smallest round in which some process updates xp to a value different from v.
Since in round r0, n−f processes have xp = v, and no process updates xp to a value different from v
before round r′, in round r′ we have at most f processes that send v′ ̸= v. Assume by contradiction
that q updates xq to v′:

1. Process q has received at most f messages with value different from v;

2. Following 1, q has received at most f messages with v′;

3. Considering 2, process q must have received at most f messages with v (otherwise q would
not have updated xq to v′);

4. Process q has received at least n− f messages (otherwise it would not have reached line 76).

So we have f + f ≥ n− f (f from item 1, f from item 3, ≥ n− f from item 4), i.e., 3f > n. A
contradiction with f < n/3.

In round r0 we have at least n− f processes with xp = v, and we have shown that in all rounds
≥ r0, processes can update xp only to v. So in all rounds ≥ r0 we have at least n− f processes with
xp = v; this means that only v can be decided after round r0. □

Proof of termination (sketch): The termination follows from the following observation. Con-
sider Pbasic and round r0 ≥ GSR such that all faulty processes have crashed before round r0. In
round r0, for all processes, the condition of line 75 is true. Moreover, for all p, q, in round r0 the set
of messages received by p and q is the same; so all processes set xp to the same value, say x. From
here on, for all p we have forever xp = x.

Consider now round r0 + 1. The condition of line 75 is again true, and since from round r0 on
all processes have xp = x, the condition of line 77 is true, and p decides at line 78. □

4.4 Multivalent vs. univalent configuration

The notion of multivalent and univalent configuration is a key notion in the context of consensus
algorithms: it helps understanding consensus algorithms.

Configuration and reachable configuration We start by introducing the concepts of config-
uration and reachable configuration. Consider the execution of some algorithm A: each process
and each channel goes through successive states. A configuration C is defined by the state of each
process and of each channel.

9

For instance, consider algorithm A with three processes p1, p2, p3 and six channels c12, c21, c13,
c31, c23, c32. A configuration C is defined by the state of the three processes and by the state of the
six channels.

A configuration C ′ is reachable from configuration C if, from C, the execution of A can bring
the system in configuration C ′.

Valence of a configuration If A is a consensus algorithm, an attribute called valence of con-
figuration C — denoted by val(C) — can be attached to C: val(C) is the set of possible decision
values in configurations that are reachable from C.

If |val(C)| = 1, we say that C is univalent ; if |val(C)| > 1, we say that C is multivalent ; if
val(C) is univalent and val(C) = {v}, we say that C is v-valent.

For example, for any consensus algorithm, if all initial values are equal to v, then the initial
configuration C0 is v-valent. If we consider OTR (Algorithm 6) and f < n/3, then any configuration,
such that n− f processes have xp equal to some value v, is v-valent.

Valence and consensus algorithms The notion of univalence allows us to explain the principle
of consensus algorithms. A consensus algorithm A usually work as follows:

1. A first tries to bring the system into a univalent configuration.
2. A process p decides v when it was able to observe that the system is in a v-valent configuration.

For example, in the case of OTR:

• A configuration in which n− f correct processes have xp = v is v-valent.
• If in some round r all correct processes receive the same value v from at least n− f processes,

they all set xp to v and the configuration becomes v-valent.
• If configuration becomes v-valent in round r ≥ GSR, processes will decide in round r + 1.

4.5 Coordinator-based algorithm: Algorithm “à la Paxos” (f < n/2)

The OTR algorithm is symmetric: all processes execute the same code. This requires for safety
f < n/3. It is possible to increase f from f < n/3 to f < n/2 by considering a non-symmetric
algorithm. In a non-symmetric algorithm, one process, called the coordinator, executes a different
code than the other processes.

The Paxos consensus algorithm, proposed by Lamport in 1989 and published in 1998 [7], is such
an algorithm. It is probably the consensus algorithm that is most referenced in the literature and
the most used in practice. The key features of Paxos are the following:

• Paxos requires f < n/2.
• Paxos is based on a coordinator process, which tries to impose a decision. In Paxos the

coordinator process is chosen dynamically. To make it simple, we present here a variant, in
which the coordinator is chosen by an off-line strategy, called rotating coordinator paradigm
(explained below).

• Paxos always ensures validity and uniform agreement, but requires a condition for termination.

For simplicity, rather than describing the original Paxos algorithm, we give here a version of
Paxos in the basic round model. The algorithm is called LastVoting [4], see Algorithm 7.

In LastVoting, contrary to OTR, not all rounds are identical. However,

10

• rounds 1, 4, 7, etc. are identical;

• rounds 2, 5, 8, etc. are identical;

• rounds 3, 6, 9, etc. are identical.

This leads us to group rounds into phases, where a phase consists of three rounds: phase ϕ
(ϕ ≥ 1) consists of rounds 3ϕ− 2, 3ϕ− 1 and 3ϕ.

The coordinator changes from one phase to the next phase. More precisely, in phase ϕ, the
coordinator is process

(
(ϕ−1) mod n

)
+1, i.e., p1 is the coordinator for phase 1, p2 the coordinator

for phase 2, . . ., pn the coordinator for phase n, then p1 again the coordinator for phase n+ 1, etc.
This schema is called rotating coordinator. The coordinator for phase ϕ is denoted Coord(ϕ).

The algorithm is always safe, i.e., uniform agreement and validity hold. Termination requires
predicate Pbasic.

The best way to understand the LastVoting algorithm is to understand when a configuration of
the algorithm is univalent.

v-valent configuration: The two variables of LastVoting to be considered when defining the
state of process p are xp and tsp (time-stamp): xp is initialized to the value proposed by p, and tsp
is the phase number in which p updated xp most recently. We denote by xCp , respt. tsCp , the value
of xp, respt. tsp, in configuration C.

Let Π denote the set of n processes that have to solve consensus, and let f < n/2. A configuration
C of LastVoting is v-valent if

∃Q ⊆ Π : |Q| ≥ n− f ∧ ∀q ∈ Q: (xCq = v) ∧ ∀p ∈ Π\Q : (tsCq > tsCp).

To understand why such a configuration is v-valent, consider for example n = 3, f = 1 and let
C be a configuration that satisfies the above definition. Moreover assume the following:

• Q = {p1, p2}

• xC1 = xC2 = v

• xC3 = v′ ̸= v, tsC3 < tsC1 , tsC3 < tsC2

Any process that receives (x, ts) from n− f = 2 processes, and selects x from the message with
the highest time-stamp ts, selects v. Therefore, once a configuration satisfies the above definition,
every process updates xp only to v. This allows a process to decide v in a configuration that satisfies
the above definition. This also means that such a configuration is v-valent.

Algorithm: With the above definition of a v-valent configuration, the LastVoting algorithm is
quite easy to understand:

• Round 3ϕ− 2: At line 85 process p sends xp and tsp to its coordinator, in order to allow the
coordinator to identify a possible v-valent configuration. Identification of a possible v-valent
configuration requires the reception of at least n − f messages, see line 89. Lines 90 to 92
ensure that if the configuration is v-valent, then the coordinator sets votep to v.3

3Note that round 3ϕ− 2 can be skipped in the first phase ϕ = 1. In this case, commitp must be initialized to true
and votep to xp.

11

79 Variables:
80 xp = {vp}
81 tsp = 0 # most recent round in which xp has been updated

83 Round r = 3ϕ− 2 :
84 Sr

p :
85 send (xp, tsp) to Coord(ϕ)

87 T r
p :

88 commitp = false
89 if p = Coord(ϕ) and number of (x, ts) received ≥ n− f:
90 t̂s = largest ts from (x, ts) received
91 votep = one x such that (x, t̂s) is received
92 commitp = true

94 Round r = 3ϕ− 1 :
95 Sr

p :
96 if p = Coord(ϕ) and commitp:
97 send (votep) to all processes

99 T r
p :

100 if received (v) from Coord(ϕ):
101 xp = v; tsp = ϕ

103 Round r = 3ϕ :
104 Sr

p :
105 if tsp == ϕ:
106 send (ack, xp) to all processes

108 T r
p :

109 if number of (ack, v) ≥ n− f:
110 DECIDE(v)

Figure 7: LastVoting algorithm (f < n/2) [4]

• Round 3ϕ − 1: If votep has been assigned in round 3ϕ − 2, it is sent to all at line 97. The
value of vote is adopted at line 101 where tsp is updated.

• Round 3ϕ: A process that has adopted the vote, sends ack to all (line 106), in order to allow
the identification of a v-valent configuration (condition at line 109), which leads to a decision
at line 110.

Validity is obvious.

Proof of uniform agreement (sketch): Let ϕ0 be the first phase at which some process decides.
Let p be such a process and let v be its decision value. So n− f processes have sent ⟨ack, v⟩ to p at
line 109, and these n−f processes have set xp to v and tsp to ϕ0 at line 101 (*). The other processes
q, at most f < n/2, trivially have tsq < ϕ0 (**). We denote by Qv the first set of processes, and by
Qother the second set.

Consider the smallest round ϕ1 > ϕ0 in which the condition of line 89 is true for some process
c. If f < n/2, then n− f > n/2. Therefore c receives at least one message from Qv. From (*) and

12

(**) it follows that c sets votep to v at line 91. So in round ϕ1 only v can be decided. By a simple
induction, we can show that the same holds for every phase > ϕ0, which shows that agreement
holds. □

Proof of termination (sketch): Consider Pbasic and phase ϕ0 such that 3ϕ0 − 2 ≥ GSR, all
faulty processes have crashed before phase ϕ0, and the coordinator c0 of phase ϕ0 is correct.

Since in phase ϕ0 all messages sent are received, the condition at line 89 for some process c0 is
true, and c0 sends a vote to all at line 97. Since in phase ϕ0 all messages sent are received, the vote
is received by all at line 100, xp and tsp are updated by all at line 101, and all send ack to all at
line 106. Since in phase ϕ0 all messages sent are received, the condition at line 109 is true for all
non crashed processes, and all non crashed processes decide at line 110. □

4.6 Consensus in an asynchronous system augmented with failure detectors

We introduced failure detectors in a previous lecture as an alternative means to capture timing
assumptions [3]. Failure detectors can also be used to solve consensus in an asynchronous system
where a majority of processes is correct.

It has been shown that the weakest failure detector required to solve consensus in an asyn-
chronous system where a majority of processes is correct, does not need to satisfie strong proper-
ties [2]. Indeed, this failure detector, called eventually weak failure detector and noted ♢W, only
satisfies the following properties:

• Weak Completeness: Eventually every process that crashes is permanently suspected by some
correct process.

• Eventual weak accuracy : There is a time after which some correct process is never suspected
by any correct process.

Describing consensus algorithms based on failure detectors is outside the scope of this course,
as they are in general more complex to explain than algorithms based on the partially synchronous
model. Furthermore, it is interesting to note that algorithms based on partially synchronous model
are easier to extend to the crash-recovery model compared to algorithms that rely on a failure
detector.

References

[1] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming. Springer Publishing Company, Incorporated, 2nd edition, 2011.

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.
Journal of the ACM (JACM), 43(4):685–722, 1996.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM (JACM), 43(2):225–267, 1996.

[4] B. Charron-Bost and A. Schiper. The heard-of model: computing in distributed systems with
benign faults. Distributed Computing, 22:49–71, 2009.

13

[5] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[7] L. Lamport. The part-time parliament. In Concurrency: the Works of Leslie Lamport, pages
277–317. 2019.

[8] N. A. Lynch. Distributed algorithms. Elsevier, 1996.

14

