Lecture notes: Studying distributed systems — Reliable Broadcast

M2 MOSIG: Large-Scale Data Management and Distributed Systems

Thomas Ropars

2024

This lecture studies the implementation of reliable broadcast primitives'. Considering a crash-
stop failure model, it studies broadcast algorithms that differ according to the reliability and ordering
guarantees they offer.

1 Motivations

In a distributed system, it is often useful to be able to send a message to a group of processes. This
is the service a broadcast primitives implements.

Since faults might occur, we are interested in reliable broadcast primitives. Defining the prop-
erties of a reliable broadcast primitive is not as simple as it seems. A simple property would be:
all processes deliver the same set of messages. But what should we do if a sender crash after it has
sent its message to some processes but not to all?

2 Safety and liveness

When defining the expected properties for a distributed algorithms, we need to define properties that
cover two categories: safety properties and liveness properties. Roughly speaking, a safety property
stipulates that “nothing bad” will ever happen; a liveness property stipulates that “something good”
will eventually happen.

More precisely, a safety property is a property whose violation can be observed by looking only
at the prefix of an execution (i.e., by looking only at an execution up to a certain time). This is
not the case for a liveness property. A liveness property is a property whose violation cannot be
observed on a prefix of an execution: if the property does not hold on a prefix of an execution, it
might still hold later.

3 Best-effort broadcast

For this algorithm and each of the following ones, we adopt the same approach. We start be defining
the required safety and liveness properties of the algorithm. Then we propose an implementation
that satisfies these properties.

! Acknowledgments: This lecture is strongly inspired from Chapter 3 of the book of Cachin, Guerraoui, and
Rodrigues [1]



For all algorithms, we consider a crash-stop failure model for processes and we assume quasi-
reliable channels.
3.1 Specification

The best-effort broadcast abstraction has the following properties:

o Integrity: Fach process delivers message m at most once, and only if was broadcasted by some
process.

o Validity: If a correct process broadcasts a message m, then every correct process eventually
delivers m.

Integrity is a safety property while validity is a liveness property.

3.2 Implementation

Figure 1 presents an implementation of the best-effort broadcast primitive. The group of processes
into which message m is broadcasted is noted II.

1 Implements:

2 BestEffortBroadcast, instance beb.

4 Uses:

5 QuasiReliablePointToPointLinks, instance qrl.
7 Upon beb.broadcast (m) :

8 for all q € II:

9 qrl.send(q, m)

11 Upon grl.deliver(p, m)

12 Trigger beb.deliver (m)

Figure 1: Implementation of Best-Effort Broadcast.
The implementation is trivial as it simply relies on the properties of quasi-reliable links.

Performance: To analyze the performance of the algorithm, we consider 2 metrics: 1) The num-
ber of communication steps required to terminate one operation; 2) The total number of messages
exchanged during one operation. We want to compute these metrics as of function of N, the number
of processes in II.

The algorithm presented in Figure 1 requires 1 communication step and exchanges O(N) mes-
sages.

4 Regular Reliable Broadcast

With the best-effort broadcast primitive, if a sender crashes, some processes might deliver a message
m while the others don’t. The processes do not agree on the set of messages to deliver. In practice,



it can be problematic if not all correct processes deliver the same set of messages. The goal of the
(regular) Reliable Broadcast primitive? is to ensure this property.

4.1 Specification

The reliable broadcast abstraction has the following properties:

o Integrity: Fach process delivers message m at most once, and only if was broadcasted by some
process.

o Validity: If a correct process broadcasts a message m, then every correct process eventually
delivers m.

e Agreement: If a message m is delivered by some correct process, then m is eventually delivered
by every correct process.

Compared to best-effort broadcast, we introduce an additional Agreement property, which is a
liveness property?>.

4.2 Implementation

Figure 2 presents an implementation of the reliable broadcast primitive. For this implementation,
we rely on the best-effort broadcast primitive. We also rely on a perfect failure detector.
The algorithm handles two main cases to ensure agreement:

e If a process delivers a message m for which the source has already crashed, it broadcasts (using
best-effort broadcast) m again (line 31).

e When a process becomes aware that a process g has crashed, it best-effort broadcasts all the
messages from ¢ it has already delivered (line 36).

Performance : If no process crash (best case), it takes 1 communication step and O(N) messages
to rb-deliver a message to all processes. The worst case is if all processes crash one by one and if the
message is delivered only by one process before the sender crashes, and the process who delivered
the message in the next one to crash. In this case, N communication step and and O(N?) messages
are required.

5 Uniform reliable broadcast

With the reliable broadcast primitive described above, we can have a scenario where a faulty process
delivers a message m before it crashes, and where the correct processes never deliver this message:
The agreement property only applies to correct processes.

2From this point on, when we simply say “reliable broadcast”, we are referring to the regular reliable broadcast
abstraction.

3The fact that this agreement property is a liveness property can be counter-intuitive since if message m is not
delivered by any process, the property is ensured. However, considering the definition of liveness given above, it fits
in this category: We can’t conclude that the property is not ensured by considering a prefix of the execution.



13

14

16
17
18

20
21
22

24
25

27
28
29
30
31
32

34
35
36
37

on a screen-,

Implements:

ReliableBroadcast, instance rb.

Uses:
BestEffortBroadcast, instance beb
PerfectFailureDetector, instance P

Variables:
correct = Il # The set of processes considered correct
from[N] = {0, @, ..., 0} # N is the total number of processes

Upon rb.broadcast (m):
beb.broadcast([self, m]) # self is the id of the process

Upon beb.deliver(p, [s, m]) # s is the id of the original source
if m ¢ from[s]:
Trigger rb.deliver (m)
from[s] = from[s] U m
if s ¢ correct:
beb.broadcast([s, m])

Upon event crash(q) raised by P:
correct = correct \ {q} # remove q from the set
for all m € from[q]:
beb.broadcast([q, m])

Figure 2: Implementation of Reliable Broadcast.

In some scenarii, such behavior is not acceptable. In any scenario where processes interact with
the outside world, we do not want this kind of behavior. Imagine that the messages are displayed
or that the messages are orders for transferring money. In such a case, we cannot
assume anymore that it is not a problem that a process delivered m because that process crashed

4

afterwards.

We want to implement a broadcast primitive with a stronger agreement property, which is called
Uniform Agreement. We find the need for such a uniform property in many other abstractions.

5.1 Specification

The uniform reliable broadcast abstraction has the following properties:

o [ntegrity: Each process delivers message m at most once, and only if was broadcasted by some

process.

o Validity: If a correct process broadcasts a message m, then every correct process eventually

delivers m.

o Uniform Agreement: If a message m is delivered by some process (whether correct or not),

then m is eventually delivered by every correct process.

4The user might have read the message before the process crashes and it might not be acceptable to consider that

the message did not exist.



5.2 Implementation

Figure 3 presents an implementation of the uniform reliable broadcast primitive. For this imple-
mentation, we still rely on the best-effort broadcast abstraction. We also rely on a perfect failure
detector.

38 Implements:

39 UniformReliableBroadcast, instance urb.

41 Uses:

42 BestEffortBroadcast, instance beb

43 PerfectFailureDetector, instance P

45 Variables:

46 correct = II # The set of processes considered correct
47 delivered = ()

48 pending = 0

49 for all m:

50 ack[m] =

52 Upon urb.broadcast(m) :

53 pending = pending U [self,m]

54 beb.broadcast ([self, m])

56 Upon beb.deliver(p, [s, m]) # s is the id of the source
57 ack[m] = ack[m] U p

58 if [s, m] ¢ pending:

59 pending = pending U [, m]

60 beb.broadcast([s, m])

61 tryDeliver([s,m])

63 Upon event crash(q) raised by P:

64 correct = correct \ {q}

65 for all [s, m] € pending:

66 tryDeliver([s,m])

68 Function canDeliver(m):

69 return (correct C ack[m]) # we receive m from all correct processes
71 Function tryDeliver([s, m]):

72 if canDeliver(m) and m ¢ delivered:

73 delivered = delivered U m

74 Trigger urb.deliver([s, m])

Figure 3: Implementation of Uniform Reliable Broadcast.

The proposed solution is called All-ack Uniform Reliable Broadcast. The basic idea is that
a process can deliver a message only when it has received a copy of that message from all correct
processes (condition tested by the function canDeliver ()), which implies that they have all received
the message. The ack array includes one entry per message, that stores the list of processes from
which a given message has already been received (line 57).



Performance : If no process crash (best case), it takes 2 communication steps to rb-deliver a
message to all processes. In the first step, the source rb-broadcast to all (N messages sent). In the
second step, all processes except the source rb-broadcast to all ((N — 1) x N messages sent). The
total number of messages sent is N2. In the worst case, when processes crash in sequence, N + 1
steps are required to terminate.

6 FIFO reliable broadcast

In addition to agreement guarantees, some applications have also requirements on the order in which
messages are delivered. For instance, if we implement a distributed game, and we broadcast the
successive positions of each player in the game.

We consider now the implementation of a FIFO (reliable) broadcast, that extends the reliable
broadcast abstraction to guarantee if a process broadcasts two messages, they are delivered in the
order they were sent.

6.1 Specification
The FIFO broadcast abstraction has the following properties:

o [ntegrity: Each process delivers message m at most once, and only if was broadcasted by some
process.

o Validity: If a correct process broadcasts a message m, then every correct process eventually
delivers m.

e Agreement: If a message m is delivered by some correct process, then m is eventually delivered
by every correct process.

e FIFO delivery: If some process broadcasts message mq before it broadcasts message ms, then
no correct process delivers my unless it has already delivered m;.

6.2 Implementation

Figure 3 presents an implementation of the FIFO reliable broadcast primitive. A per-process se-
quence number piggybacked on each message allows deciding when a message can be delivered.
References

[1] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming. Springer Publishing Company, Incorporated, 2nd edition, 2011.



76
7

79
80

82
83
84
85

87
88
89

91
92
93
94
95
96

Implements:

FIFOReliableBroadcast, instance frb.

Uses:

ReliableBroadcast, instance rb.

Variables:

1sn = 0 # local sequence number

pending = 0

next[N] = {1, 1, ..., 1} # seq. number of the next message to deliver

Upon frb.broadcast(m):
lsn = 1sn + 1
rb.broadcast([m, 1sn])

Upon rb.deliver(p, [m, lsn]):
pending = pending U {[p, m ,1snl}

while exists (p, m

next [p]
pending
Trigger

", lsn') € pending such that lsn’ = nextl[p]:

= next[p] + 1
= pending \ {m'}
frb.deliver(m’)

Figure 4: Implementation of FIFO Broadcast.



