Lecture notes: Studying distributed systems — About abstractions
and failure detectors

M2 MOSIG: Large-Scale Data Management and Distributed Systems

Thomas Ropars

2024

1 Abstractions

Distributed systems are complex systems with a large diversity in hardware and software. Servers
can vary in the number of processors, their type, the storage they have access to, etc. Communi-
cation infrastructures differ in performance, reliability, topology, etc. Hence, to be able to reason
about distributed systems, we need to define abstractions.

The first risk, if we would focus on a specific distributed infrastructure, would be to design
solutions that could only work on that specific infrastructure. The second risk is that the systems
are so complex that trying to take into account all the problems at once would be so difficult that
we would never reach to a solution.

We can note that in the previous lectures, we already used some abstractions: We represented
the activity of a process as a sequence of events; To define the Chandy-Lamport snapshot algorithm,
we assumed FIFO channels.

1.1 A component model

As in software engineering, we will think about the abstractions we define in terms of components
(or modules) with an interface. To build complex systems, we will use a stack of components where
a component higher in the stack will rely on the service provided by components below, as illustrated
in Figure 1.

To specify a component, we first need to define its interface (API), that is, how the other com-
ponents can interact with it. Then, we need to define its properties, that is, the service/guarantees
it provides to other components. Finally, we have to provide an algorithm that implements the
expected properties.

2 Fault models

One core challenge when designing and implementing distributed systems is the fact that different
problems (called faults) can occur at the hardware and at the software level. A piece of hardware
may stop working completely or partially. There can be bugs and misconfigurations. A server might
stop responding because it is overloaded, etc.



i Events

Component A

i Events

Component B

i Events

Figure 1: Composition model [1]

Once again, it would be too complex to reason about and handle each specific fault indepen-
dently. Hence, we define fault models that capture the main consequences of different kind of faults.
In a distributed system, faults might impact processes and communication links. Hence, we need
to define fault models for each of them.

2.1 Fault model for processes

In our model, a process executes an algorithm implemented through a set of components. A failure
occurs whenever the process does not behave according to the algorithm. The unit of failure is the
process: When a process fails, all the components executed by the process fail.

We can consider different models depending on the fault that causes a process to fail. The most
common fault model is crash-stop. This is the main model that we will consider during the course.

Crash-stop model This model can be described as follows. The process executes its algorithm
until some time ¢ after which it stops executing. We say that the process crashes at time t. When
it crashes, the process stops executing any local computation and does not send any message to
other processes The process does not recover after a crash.

In the crash-stop model, it is usual to distinguish between correct and faulty (i.e., non-correct)
processes. The notion of “correct” refers to the whole execution of a process. A process is said to
be correct if it does not crash; a process that crashes is said to be faulty.

Other models Other faults models can be considered for processes. The two main ones are the
crash-recovery and the byzantine fault model:

e Crash-recovery: In this model, a process can crash and stop to send messages, but might
recover later. At the moment, it resumes its execution, its state might not be up-to-date,
since it crashed for some time. An algorithm designed based on this model needs to be able
to deal with processes that would send outdated messages.

e Byzantine faults: Also called Arbitrary fault. This model is used to describe processes that
may behave arbitrarily. The process may crash, drop messages, stop behaving according to



the algorithm it is supposed to execute, behave differently depending on the process it is
exchanging messages with, etc. Among other things, this model is used to represent malicious
behaviors.

Crash-stop vs crash-recovery Based on the provided definitions, we could wonder whether the
crash-stop model can be useful in practice since it states that a process never recovers.

Actually, the crash-stop model does not prevent processes from recovering. However, an algo-
rithm designed for the crash-stop model should continue working even if a crashed process never
recovers. To deal with this issue, in the crash-stop model, we will assume that a majority of processes
never crash.

2.2 Fault model for channels

With respect to links (channels) the following definitions can be considered:

o Integrity: A link from p to ¢ satisfies integrity if ¢ receives a message m at most once, and
only if p previously sent m.

with one of the following properties:

e Fair link: A fair link from p to ¢ satisfies integrity and the following property:
If p sends infinitely many messages and ¢ is correct, then ¢ receives infinitely many messages.
e Reliable link: A reliable link from p to ¢ satisfies integrity and the following property:
If p executes send(m) and ¢ is correct, then ¢ eventually receives m.
e Quasi-reliable link: A quasi-reliable link from p to ¢ satisfies integrity and the following
property:
If p executes send(m), and p and ¢ are correct, then ¢ eventually receives m.

Let process ¢ be correct. Assuming reliable links, if p executes send(m) at time ¢, and crashes
at time ¢t + 1, then ¢ must eventually receive m. This is not the case with quasi-reliable links, which
define a weaker property. The reliable link definition does not adequately model existing transport
layers (e.g., TCP). However, reliable links are useful to prove impossibility results (they strengthen
impossibility results). Note that the two definitions are equivalent if processes do not crash.

2.3 Implementation of quasi-reliable links

In the following, we study how to implement quasi-reliable links on top of fair links. Through this
implementation, we will illustrate the use of abstractions and how components can be combined to
solve a problem.

We start by introducing the concept of stubborn links. A stubborn link satisfies integrity only
partially (A message is received only if it was sent) and the following property:

o Stubborn link: If a correct process p sends a message m once to a correct process ¢, then q
delivers m an infinite number of times.



1 Implements:

2 StubbornPointToPointLinks, instance sl.

4 Uses:

5 FairPointToPointLinks, instance f1.

7 Variables:

8 sent = )

10 Init(Q):

11 starttimer (A) # triggers a timeout after A time units.
13 Upon event Timeout:

14 forall (q,m) € sent:

15 fl.send(q, m) # send msg m to process q using the fair link component
16 starttimer (A)

18 Upon sl.send(q, m):

19 fl.send(q, m)

20 sent = sent U (q,m)

22 Upon fl.deliver(p,m)

23 Trigger sl.deliver(p, m)

Figure 2: Implementation of stubborn links: Retransmitting forever. p represents the local process
and ¢ the remote process

Algorithm for stubborn links We propose an algorithm that implements stubborn links in
Figure 2. The algorithm is simple: For a given channel from process a to process b, it keeps re-
transmitting all messages sent by a to b. It assumes that a timer mechanism exists, that can trigger
an action after a delay A.

Algorithm 2 is obviously not efficient from performance point of view. However, the first goal
here is to understand how different components can be used together to provide a high-level service:
our stubborn-link algorithm relies on a component implementing fair links (see line 15 for instance);
later, we will rely on the stubborn-link component to implement quasi-reliable links.

Note that in the description of the algorithm, we use the word deliver instead of receive. We use
deliver to refer to the moment when a component has decided, based on the algorithm it executes,
to transmit a message to the component above. This can be different from the moment when the
process has received the message (for instance if a FIFO property should be implemented).

To improve the performance of Algorithm 2, we could think of implementing an acknowledgment
to prevent p from sending messages ¢ has already received. However, if we would do so, the algorithm
would not comply with the stubborn property, as defined above.

Algorithm for quasi-reliable links Figure 3 presents a solution to implement quasi-reliable
links based on stubborn links. The idea is to eliminate the duplicates generated by the stubborn
links.

In addition to the performance issues related to the use of stubborn links, the proposed algorithm
introduces another problem related to the size of the delivered set that could become very large.



24 Implements:

25 QuasiReliablePointToPointLinks, instance qrl.
27 Uses:

28 StubbornPointToPointLinks, instance sl.
30 Variables:

31 delivered = 0

33 Upon grl.send(q, m):

34 sl.send(q, m)

36 Upon sl.deliver(p,m)

37 if m ¢ delivered:

38 delivered = delivered U m

39 Trigger qrl.deliver(p, m)

Figure 3: Implementation of quasi-reliable links: Eliminating duplicates

A solution to this problem could be, once again, to use acknowledgment messages to notify the
source process (P,) that the destination process (P,) has already delivered a given message m.
When P, stops sending a message, P, could remove it from its delivered set. But it creates a
new issue. What if an acknowledgment message gets delayed, and P, deletes a message my, from its
set too early (i.e., before the acknowledgment was received)? There is a chance that message my
would be sent and delivered again, violating the Integrity property. Additional mechanisms based
on timestamps could be used to fix the problem.

3 The synchronous system model

Until now, we have considered an asynchronous system model. An alternative is to consider a
synchronous system model that can be defined as follows.

In a synchronous system there is (1) a known bound A on the transmission delay of messages,
and (2) a known bound 8 on the relative speed of processes:

e Bound on message delay: If message m is sent by process p to process g at time ¢, then ¢
receives the message no later than at time ¢t + A1

e Bound on the relative speed of processes: If the fastest process takes x time units to do some
computation, then the slowest process does not take more than x8 time units to do the same
computation.

3.1 Synchronous model and failure detection

A difficult problem with the asynchronous system model is to detect failures: How to make the
difference between a failed and a slow process?

In a synchronous system, channels are assumed to be reliable.



A synchronous system allows accurate failure detection:
process p crashes at time t <= p is accused of having crashed at t' > t.
For example, for process p to know whether process ¢ has crashed or not:
e p sends “are you alive” to q

e upon reception of this message, ¢ sends “yes” to p

send(alive?)
P . .

/

q * L
send(yes)

Process p knows that handling the “are you alive” message and sending the reply is done in x
time unit by the fastest process. So if p has not received the “yes” message after 2A + x3, it knows
that ¢ has crashed.

3.2 Synchronous model in practice

Although the synchronous model simplifies the design of distributed algorithms, it has the major
drawback that it is difficult to apply in practice. Building a distributed infrastructure with very
low variations on the transmission delays and strong guarantees on the time it takes for a process
to react to some event, can be difficult.

An alternative would be to set A and /3 to large (pessimistic) values to ensure that they always
hold even if there are delays in the real system. However, a performance problem appears in this
case. If an algorithm relies on these bounds to take decisions, it will become very slow.

Later in the course, we will introduce the partially synchronous model to overcome the limitations
of the pessimistic approach imposed by the synchronous model.

4 Failure detectors

When defining a model for processes and channels earlier, we did not introduce a notion of time, as it
is the case for the synchronous execution model. Indeed, in distributed systems timing assumptions
are mostly used to detect failures.

To capture timing assumptions without having to redefine a process and a channel model, the
concept of (unreliable) failure detector has been introduced by Chandra and Toueg [2]. A failure
detector can be used to augment an asynchronous system and solve some problems that could not
be solved otherwise (e.g., consensus).

Failure detectors give each process an information — that can be unreliable — about the status
crashed/alive of the other processes [2].

The failure detector model is defined as follows. Each process p; has access to a local failure
detector module F'D; that it can query (see Figure 4). Each local module F'D; monitors the processes
in the system (or a subset of the processes), and maintains a list of processes that it currently
suspects to have crashed.

Moreover, we have the following list of basic properties for failure detectors:



FD; FD;: maintains a list of suspected processes FDj

FDs FD4

Figure 4: Failure detector module

e Each failure detector can make mistakes by erroneously adding processes to its list of suspects
(i.e., it can suspect a process that has not crashed). In other words, the failure detectors are
unreliable.

e A failure detector can change its mind by removing processes from its list, if it believes that
the suspicion was erroneous.

e At a given time the failure detector modules at two different processes may have different lists
of suspects.

If we do not set any constraint on the output of the failure detectors, it does not change anything
compared to a simple asynchronous system. Hence, the idea is to add constraints, expressed in terms
of two abstract properties: a completeness property and an accuracy property. Completeness sets
constraints with respect to crashed processes, while accuracy sets constraints with respect to correct
processes.

Completeness: Two completeness properties have been defined:

e Strong Completeness: Eventually every process that crashes is permanently suspected by every
correct process.

o Weak Completeness: Eventually every process that crashes is permanently suspected by some
correct process.

Accuracy: Four accuracy properties have been defined:

Strong accuracy: No process is suspected before it crashes.

o Weak accuracy: Some correct process is never suspected.

FEventual strong accuracy: There is a time after which correct processes are not suspected by
any correct process.

Eventual weak accuracy: There is a time after which some correct process is never suspected
by any correct process.



Class of failure detectors: A pair (completeness property, accuracy property) defines a class of
failure detectors. For example failure detector names have been attached to the following pairs:

e Perfect failure detector, denoted P: satisfies strong completeness and strong accuracy.

e Fventually perfect failure detector, denoted (QP: satisfies strong completeness and eventual
strong accuracy.

e Strong failure detector, denoted S: satisfies strong completeness and weak accuracy.

e Fventually strong failure detector, denoted (S: satisfies strong completeness and eventual
weak accuracy.

P defines a property stronger than (P, which defines a property stronger than ¢S. P also
defines a property stronger than S.
The failure detector class P captures the ability to detect failures in a synchronous system.

We will study in upcoming lectures how failure detectors can be used to implement some dis-
tributed algorithms.

References

[1] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming. Springer Publishing Company, Incorporated, 2nd edition, 2011.

[2] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM (JACM), 43(2):225-267, 1996.



