
Lecture notes: Studying distributed systems – The notion of time

M2 MOSIG: Large-Scale Data Management and Distributed Systems

Thomas Ropars

2024

These notes discuss the notion of time in distributed systems1.

1 Asynchronous systems

A distributed system can be seen as an asynchronous system. It means that we make no timing
assumptions about processes and links. In an asynchronous system:

• there is no bound on the transmission delay of messages;

• there is no bound on the relative speed of processes.

Such a system is used to model unpredictable load on the network and on the CPU.

We will see later in the course that some problems cannot be solved if you do not make any
additional assumptions about time. But for now, we can start by wondering if, even without any
synchronized physical clocks and no assumption on time, we can have a measure of the progression
of time?

2 Logical time

In the previous lecture, we introduced the happened-before relation to capture causal relations
between events in a distributed system. We rephrase the question above as follows: Is it possible to
time-stamp the events of a distributed computation such that the happened-before relation can be
inferred? In other words, if TS(e) denotes the time-stamp of some event e, is it possible to satisfy
the following property:

e → e′ ⇐⇒ TS(e) < TS(e′).

We first introduce time-stamps that satisfy only e → e′ =⇒ TS(e) < TS(e′). These time-
stamps are called logical (scalar) clocks or Lamport clocks. Then we introduce time-stamps that
satisfy e → e′ ⇐⇒ TS(e) < TS(e′). These time-stamps are called (logical) vector clocks. Logical
(scalar) clocks and vector clocks are used, either explicitly of implicitly,2 in several distributed
algorithms.

1Acknowledgments: Parts of these notes are strongly inspired by the lectures notes of Andre Schiper on Distributed
Algorithms.

2The basic mechanism of their implementations is used.

1



2.1 Logical scalar clocks (Lamport clocks)

The property e → e′ =⇒ TS(e) < TS(e′) can be ensured with the logical clocks defined by Lam-
port [1]. The time-stamps of event e will be denoted by LC(e), and the logical clock of process pi
will be denoted by LCi. The events on pi are time-stamped using LCi according to the following
rules:

• The initial value of LCi is 0 for all processes

• For any internal event on process pi, LCi = LCi + 1

• When process pi sends message m, LCi = LCi+1, and the value of the logical clock is attached3

to message m. It means that if ts(m) is the time-stamp on message m, ts(m) = LC(eki ), where
eki ≡ send(m)

• When process pj receives message m, LCj = max(LCj , ts(m)) + 1

It can be shown that the following property holds: ∀ events e, e′: e → e′ ⇒ LC(e) < LC(e′).
Figure 1 presents an example of execution where all events are timestamped using Lamport

clocks.

Figure 1: Example of execution with Lamport Clocks

After occurrence of event eji on pi, the logical clock of pi is updated: LCi := LC(eji ).

Note that LC(e) < LC(e′) ̸⇒ e → e′. Take for example the event on p1 with time-stamp 2 and
the event on p3 with time-stamp 3 in Figure 1.

Remark LC(e) is equal to the length of the longest causal chain ending at event e.
Example: LC(e41) = 6. Longest causal chain: e11 → e13 → e23 → e33 → e43 → e41.

2.2 Logical vector clocks

Vector clocks, proposed independently by Mattern and by Fidge in 1988, satisfy the property e →
e′ ⇐⇒ TS(e) < TS(e′). The time-stamp of event e will be denoted by VC(e), and the vector clock
of process pi will be denoted by V Ci.

3We also say "piggybacked".

2



VC(e) is a vector of size n. For some event ei occurring at process pi, the time-stamping rules
ensure the following property:

• For i = j, VC(ei)[j] = number of events on pi up to and including ei.

• For i ̸= j, VC(ei)[j] = number of events on pj that happened before ei.

Figure 2: Illustration about Vector Clocks

Consider e41 in Figure 2, with time-stamp (4, 2, 4). We can say that:

• 4: e41 is the fourth event on p1;
• 2: Two events on p2 happened before e41;
• 4: Four events on p3 happened before e41.

The events on pi are time-stamped using V Ci according to the following rules:
if ei is an internal event or send(m) then
∀j ̸= i, VC(ei)[j] = VCi[j]
VC(ei)[i] = VCi[i] + 1

else
{ei is a receive event: message m with timestamp ts(m)}
VC(ei) = max(VCi, ts(m)) 4

VC(ei)[i] = VC(ei)[i] + 1
end if

Similarly to Lamport clocks, ts(m), the time-stamp piggy-backed on message m, is defined as
the time-stamp of the send(m) event: TS(m) = VC(eji ), where eji ≡ send(m).

Similarly to Lamport clocks, after occurrence of event eji on pi, the vector clock of pi is updated:
VCi := VC(eji ).

We consider the relation < on vectors, defined as usual:

VC(e) < VC(e′) ⇔ ∀i VC(e)[i] ≤ VC(e′)[i] and
∃j VC(e)[j] < VC(e′)[j].

It can be shown that vector clocks indeed ensure the following property:

VC(e) < VC(e′) ⇔ e → e′.

4The max of two vectors is computed element by element.

3



Figure 3: Example of execution with Vector Clocks

References

[1] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In Concurrency:
the Works of Leslie Lamport, pages 179–196. 2019.

4


