
Lecture notes: Studying distributed systems – Motivations and
the ordering of events

M2 MOSIG: Large-Scale Data Management and Distributed Systems

Thomas Ropars

2024

These notes present the motivations of the course. It describes basic concepts related to dis-
tributed systems and then, discusses the ordering of events in a distributed systems1.

1 Introduction

1.1 Definitions

We start by defining the concept of distributed system. As a starting point we can quote L. Lamport:

Definition 1 (Distributed systems – by L. Lamport). A distributed system is one in which the
failure of a computer you didn’t even know existed can render your own computer unusable.

Our definition of a distributed system involves two main caracteristics:

Definition 2 (Distributed systems – for this course). A distributed system is:

• A system composed of multiple processes that seek to achieve some form of cooperation.

• A system in which some processes may stop working while the others might keep operating
(notion of partial failures).

In a distributed system, processes communicate by sending and receiving messages.

1.2 Motivations

This part is inspired from the Chapter 1 of the book of Cachin et al. [1]. The goal is to get an
overview of the motivations for distributed systems.

The basic form of distributed computing that we are all used to is client-server. This is what
happens when you are browsing the web for instance: your browser (the client) connects to a web
server to retrieve some content. In this case, the server is a centralized process that provides a
service to many remote clients. The interactions are in the form of request-reply. The clients issue
requests to the server, that replies.

1Acknowledgments: Parts of these notes are strongly inspired by the lectures notes of Andre Schiper on Distributed
Algorithms.

1

With this simple form of distributed computing, we can already anticipate some problems in the
presence of partial failures: how to ensure that clients will keep receiving answers to their requests
if the server stops working?

In practice, it is often the case that more than two processes need to cooperate to achieve a
goal, which makes the problem even more difficult.

Inherent distribution Considering the case of web applications, the server that is contacted by
a client through a request, might need the help of other servers to answer that request. Indeed, such
applications are often divided into multiple services, each service being in charge of a simple task
(this separation of concerns has a lot of advantages regarding the development of the application
logic).

As an example, a web store application [5] can be composed of multiple services respectively in
charge of: user authentication, product database, images management, etc. Larger applications can
even include tens or hundreds of services [3].

Other applications are distributed by nature. Here are a few examples:

• A communication system where the sources and destination of information are geographically
distributed

• A colaborative document editing application

• Distributed databases/storage where the volume of data to store is so big that it requires
several machines

Distribution as an artefact Some applications are not inherently distributed but rely on dis-
tributed computing to solve some engineering problems. Fault tolerance is a reason for building a
distributed system. Having a single copy of an application running is a problem if the computing
unit on which it runs fails. An alternative is to run multiples replicas of the application on different
severs.

Performance can be another motivation for building a distributed system. If a single server
becomes overloaded and takes time to answer requests from clients, replication can again be a
solution.

2 Model of a distributed computation

To be able to reason about distributed systems, we need to define a model that allows us capturing
the relevant caracteristics of the systems we study.

A distributed computation is generated by some distributed algorithm. A distributed computa-
tion can be modelled as follows. The basic components of a distributed computation are processes
and channels:

• Processes are denoted by P = {p1, p2, . . ., pn}. Processes communicate exclusively by message
exchange.

• Channels (one-way channels) are denoted by cij : cij is the channel from pi ∈ P to pj ∈ P .
The set of channels is denoted by C. In this course, channels are assumed to be reliable (no
message loss, no message corrupted, no message duplicated).

2

The activity of each process pi ∈ P is modelled as a sequence of events. Event #j of process pi
is denoted by eji .

Event eji can be:

1. send(m): sending of message m

2. receive(m): reception of message m

3. an internal event (all other events, e.g., x← x+ 1).

Events may modify the state of the process. The state of process pi after the occurrence of eki
is denoted by σk

i . The initial state of pi is denoted by σ0
i .

Definition 3 (Local history of process pi). Defined as the (possibly infinite) sequence of events of
pi: hi

def
= e1i e

2
i e

3
i

The prefix (of length k) of hi is denoted by: hki
def
= e1i e

2
i . . . e

k
i

Definition 4 (Global history:). H = h1 ∪ . . . ∪ hn

The basic relation among events is called the happened before relation. The relation was defined
by Lamport in 1978 [4].

Definition Happened before relation (denoted by →):
Let e, e′ be two events. e→ e′ holds iff one of the following three conditions is true:

1. e ≡ eki , e
′ ≡ eli, k < l

2. e ≡ send(m), e′ ≡ receive(m)

3

3. Transitive closure:
∃e′′ such that e→ e′′ and e′′ → e′

The relation happened before is:

• antisymmetric: e→ e′ ⇒ e′ ̸→ e

• transitive: e→ e′ and e′ → e′′ ⇒ e→ e′′

Therefore, the happened before relation defines a partial order on the events of a distributed
computation. The relation does not define a total order (it would require, for all events e, e′, to
have either e→ e′ or e′ → e).

Definition Concurrent events: Let e, e′ be two events such that neither e → e′ nor e′ → e holds.
The events e, e′ are said to be concurrent (notation: e||e′).

In the above figure, we have e22||e13.

Definition A global state of a distributed computation is defined by the tuple (σk1
1 , σk2

2 , . . . , σkn
n).

Note that the global state, as defined here, does not include the state of the communication channels.

Definition Run. To be able to reason about executions in distributed systems, the notion of run is
introduced. A run R of a distributed computation is a sequence of all the events in the global
history that is consistent with the happened before relation (if e → e′, then e must appear
before e′ in the sequence). A single distributed computation may have many runs.

Consider the distributed computation in the figure on the top of the page. Examples of runs
are:

• run R = e11 e12 e21 e22 e13 e23 e31 e33 e43 e41
• run R′ = e12 e11 e21 e22 e13 e23 e31 e33 e43 e41
• etc.

3 Cuts

A cut C of a distributed computation is defined as a subset of the global history H that includes a
prefix of each local history:

C
def
= hct11 ∪ hct22 ∪ . . . ∪ hctnn .

A cut C

4

• is defined by a tuple (ct1, ct2, . . . , ctn),
• defines the global state (σct1

1 , σct2
2 , . . . , σctn

n)

Example: cut C defined by the tuple (1, 2, 0).

4 Consistent cut

Let us consider a scenario where we want to evaluate a global property on a distributed system.
For instance, we would like to evaluate the total amount of money available on all bank accounts in
a distributed banking application. To do such computation, we need a global state of the system.

We start by considering a naive strategy to compute a global state.
We start with the following naive strategy to compute a global state. Let a process p0, outside

of the system, ask each process pi its local state σi. To do this, p0 sends a request to each process pi
and waits a response containing pi’s local state. Once all responses are obtained, process p0 builds
the global state GS = (σ1, σ2, . . . , σn) and evaluates the property on GS.

Let us consider the example below, where each process manages one bank account, and messages
are used to transfer money between the bank accounts.

Consider the global state defined by the cut C ′: (400, 650, 400, 600). The evaluation of the
global property on C ′ leads to 2050, which obviously is incorrect.2

What happened? The cut is not consistent.
2In the initial state the total amount of money is equal to 300 + 750 + 400 + 100 = 1550. Because of money in

transit, the amount can be less than 1550, but never more.

5

Definition Consistent cut: a cut C is consistent iff for all events e, e′ we have

e′ ∈ C and (e→ e′) =⇒ e ∈ C. (1)

Definition Consistent global state: a consistent global state is a global state defined by a consistent
cut.

Note that if we evaluate a property on a consistent cut, we do not take into account messages
in-transit. We will come back to this point soon.

Remark 1: Formula (1) is equivalent to

e /∈ C and (e→ e′) =⇒ e′ /∈ C.

This follows from a⇒ b ≡ ¬a or b.

Remark 2: Consider cut C that is not consistent. It can be shown that there exists message m
such that send(m) /∈ C and receive(m) ∈ C.

5 Computing a consistent global state (snapshot)

We describe now an algorithm for computing a consistent global state (algorithm proposed by
Chandy and Lamport [2]). The algorithm not only computes a consistent global state but also the
state of the channels. Consider the following figure.

On the consistent cut C we have:

• state of the processes: (σ1, σ2, σ3, σ4),
• state of channel c32: contains message m2,
• state of channel c24: m1,
• state of channel c34: m3,
• all other channels are empty.

6

Chandy-Lamport snapshot algorithm: The algorithm assumes FIFO channels. The snapshot
algorithm is initiated by any of the n processes (e.g., p1):

1. Process p1 (the initiator of the snapshot) saves its state σ1 and broadcasts the message SNAP-
SHOT to P (the set of processes).

2. Let process pi receive the SNAPSHOT message the first time from some process pj (pj can be
different from p1). At that time, pi saves its state σi and forwards (broadcast) the SNAPSHOT
message to P .

No application event can take place on pi between the reception of SNAPSHOT and the broad-
cast of SNAPSHOT. Moreover:

• The state of the channel cji (from pj to pi) is set to empty.

• For all k ̸= j, the state of the channels cki is initialized to empty. Later, whenever a
message is received from pk, it is added to the state of channel cki.

3. When pi receives SNAPSHOT from pk, the computation of the state of cki is complete. As
soon as pi has received SNAPSHOT from all the processes in P , the computation of the
snapshot is terminated.

The algorithm is illustrated on the next figure. The SNAPSHOT message is represented by the
dashed line. Only the SNAPSHOT message send by p1, as well as the first SNAPSHOT message
received by each process is drawn; moreover, only the computation of the global state is depicted.
Observe that p4 receives the first SNAPSHOT message from p3, and not from p1.

Proof of the Chandy-Lamport algorithm (sketch): We have to prove two things: (1) the
global state is consistent, and (2) the state of the channels is correctly recorded.

1. The global state (σ1, σ2, . . . , σn) is consistent. We prove the result by contradiction, using
Remark 2 above.

Let C be the cut defined by (σ1, . . . , σn). Assume for a contradiction that C is not consistent.
By Remark 2, there exists m such that e = sendi(m) ̸∈ C and e′ = receivej(m) ∈ C.
(Statement A)

7

If e ̸∈ C, then sendi(SNAPSHOT)→ sendi(m). Since channels are FIFO, we have receivej(SNAPSHOT)→
receivej(m). It follows that e′ = receivej(m) ̸∈ C. A contradiction with (A).

2. The state of the channels is correctly recorded.

Consider the channel cji. The proof is in two steps: (a) a message m is recorded iff it is in
transit on the cut, and (b) the messages are recorded in the sending order.

We can reformulate (a) as follows.

(a) m recorded by pi ⇔ sendj(m) ∈ C and receivei(m) /∈ C.
• ⇒:

– m recorded by pi ⇒ sendj(m) (on pj) is before the first reception of SNAPSHOT
on pj Therefore we have sendj(m) ∈ C.
(if sendj(m) is after the first reception of SNAPSHOT, since channels are FIFO,
m is received by pi after SNAPSHOT from pj , i.e., once the computation of the
channel cji is completed).

– m recorded by pi ⇒ receivei(m) (on pi) is after the first reception of SNAP-
SHOT on pi (computation of the channel starts after the first reception of SNAP-
SHOT). C corresponds to the first reception of SNAPSHOT; therefore we have
receivei(m) /∈ C.

• ⇐:
(i) sendj(m) ∈ C and FIFO channels ⇒ pi receives SNAPSHOT from pj after m.
(ii) receivei(m) /∈ C ⇒ pi starts the recording of messages before receiving m.
(i) and (ii) ⇒ m is recorded by pi.

(b) The order of the messages is correctly recorded.
Follows directly from the FIFO property of the channels.

References

[1] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming. Springer Publishing Company, Incorporated, 2nd edition, 2011.

8

[2] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems (TOCS), 3(1):63–75, 1985.

[3] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,
B. Jackson, et al. An open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Systems, pages 3–18,
2019.

[4] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In Concurrency:
the Works of Leslie Lamport, pages 179–196. 2019.

[5] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and S. Kounev. TeaStore:
A Micro-Service Reference Application for Benchmarking, Modeling and Resource Management
Research. In Proceedings of the 26th IEEE International Symposium on the Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems, MASCOTS ’18, September 2018.

9

