
Cloud Computing -- Microservices

Thomas Ropars

Email:

Website:

thomas.ropars@univ-grenoble-alpes.fr

tropars.github.io

1
 .
1

mailto:thomas.ropars@univ-grenoble-alpes.fr
https://tropars.github.io/

References

The following references were used to prepare these slides:

Building Microservices by Sam Newman

Many figures presented in these slides come from this book

Set of blog posts by James Lewis and Martin Fowler

See for a good introduction to microservices

Other research papers are cited on corresponding slides

this post

2

https://martinfowler.com/articles/microservices.html

Introduction

3

Definition

By J. Lewis and M. Fowler
The microservice architectural style is an approach to developing a single application as
a suite of small services, each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API.

These services are built around business capabilities and independently deployable by
fully automated deployment machinery.

There is a bare minimum of centralized management of these services, which may be
written in different programming languages and use different data storage
technologies.

4

The key concepts

Architectural style

Suite of small services

Built around business capabilities

Independently deployable

Communicating with lightweight mechanisms

Written in different programming languages

Use different data storage technologies

5

Examples of large-scale microservices apps

See: Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud &
edge systems.", ASPLOS 2019.

6

Example of a media application

See: Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud &
edge systems.", ASPLOS 2019.

7

The Key Concepts of
microservices

8

Alternative to the monolithic architecture

Monolith -- Definition
A monolith system is one in which all functionality must be deployed together

Example: The single process monolith

9

About the 3-tier architecture

A traditional approach for web applications: The 3-tier architecture

Web UI

Backend (a monolith)

Database

10

Modular Monolith

Still a monolith since all components are deployed together

In general deployed as a single process

Problems that might appear:

Difficulty in determining the boundaries of the modules

Who owns what and who decides what?

Delivery contention

Delivery delayed because another team also wants to update a module

11

The key concept of microservices

Independent deployability

Owning their own state

Alignment with organization + structured based on business domains

Size

12

Independent deployability

The goal
Being able to re-deploy a microservice without re-deploying the others

Being able to modify a service without modifying the others

Reduce the time to release new features

How this is achieved
The microservices must be loosely coupled

Clear definition of the interfaces of a service

Concept of information hiding: hiding as much information as
possible inside a

component and exposing as little as possible via
external interfaces

13

A note on information hiding

It can be shown that if a programmer has access to some information, they will take advantage

of it

Consequence:
No matter how careful people are initially, the result will eventually be tightly coupled services

The only solution is to make as little information as possible accessible from outside a service

See David Lorge Parnas. "Information distribution aspects of design methodology." (1971).

14

Owning their own state

Avoid shared databases

If a service needs an information from another service, it always needs to go through

the pre-defined interface

Why it is important:
Contributes to information hiding

Required to ensure independent deployability

15

Alignment with the organization of the
company

Old-style organization of IT companies: Group people based on their core expertise

A team of database admins

A team of backend devs

A team of frontend devs

Be aware of the Conway's law!

16

A note on Conway's law

Consequence for designing web application

See

Any organization that designs a system (defined broadly) will produce a design

whose structure is a copy of the organization's communication structure.

https://martinfowler.com/bliki/ConwaysLaw.html

17

https://martinfowler.com/bliki/ConwaysLaw.html

A note on Conway's law

Consequence for designing web application
A small group of developers that works in the same office

Will produce a monolith

Organization based on core expertise

Will produce a 3-tier architecture (still monolithic)

Note that designing an architecture that does not align with the organization structure would
be highly counter-productive:

A lot of communication overhead

Tension

See

Any organization that designs a system (defined broadly) will produce a design

whose structure is a copy of the organization's communication structure.

https://martinfowler.com/bliki/ConwaysLaw.html

17

https://martinfowler.com/bliki/ConwaysLaw.html

Problem with the 3-tier architecture

A scenario
We are developing a music streaming service

We want to add a feature: each user can specify its favorite music style in its profile

18

Problem with the 3-tier architecture

A scenario
We are developing a music streaming service

We want to add a feature: each user can specify its favorite music style in its profile

Multiple teams need to be involved

Modifications need to be deployed in the right order

18

Structure around business domains

Define microservices boundaries based on business domains

Approach inspired from Domain-Driven Design

For our previous scenario

19

About our previous scenario

A single team is in charge the Profile functionality

This team includes frontend, backend, database experts

Nowadays companies' organization:

Small poly-skilled teams (5 to 10 persons)

Goal: Avoid difficult interactions between siloed teams

This vision is even more effective with distributed and remote workers

20

The size of microservices

A difficult question
Each microservice should remain small enough that its code can be understood

And fully managed by a small team

Including deployment if possible ("Run what you wrote")

Having too many microservices has several drawbacks:

Performance issues

Complex interactions between services

Still loosely coupled ?

Deployment issues

A solution: focus on the business domains more than the size

21

A note on "Devs run what they wrote"

Idea of decentralized management
No central entity is in charge of the deployment

Idea made popular by Amazon and Netflix

Each team is fully responsible of its microservice(s)

Objective: Improve code quality
You build it, you run it

Force programmers to focus on the quality of their code

Situation: You are woken up in the middle of the night because your code does not

work

22

Advantages of microservice architectures

23

Advantages of microservice architectures

Technology heterogeneity

Robustness

Scaling

Ease of Deployment

23

Advantages of microservice architectures

Technology heterogeneity
Each component can be implemented in a different language

Since internal details are hidden, we can change the techno at any point

Database technologies can be different between components

It aligns with:

One team per microservice

Decentralized management

24

Advantages of microservice architectures

Robustness
Failure of microservice != failure of application

Parts of the application can continue working even when some components fail

Require a good isolation between components

Warning: new types of failure might appear

Network failures

25

Advantages of microservice architectures

Scaling
Each microservice can be scaled independently

26

Advantages of microservice architectures

Ease of deployment
Each microservice can be deployed independently

It is important for:

27

Advantages of microservice architectures

Ease of deployment
Each microservice can be deployed independently

It is important for:

Decentralized management

Allow new features to be deployed as soon as possible

Being able to apply DevOps approaches

Continuous integration

Continuous delivery

27

Other advantages

Alignment with the organization of the company
Sweet spot team size/productivity

Reusability
Microservices can be reused in other applications

28

Some important
technologies

29

Communication between microservices

Different communication paradigms

30

Communication between microservices

Several technologies
Remote Procedure Calls

gRPC (Protocol Buffer for data serialization)

High performance but use of an explicit schema that can lead to coupling between

components

REST + HTTP

Lower performance

Default choice for small-scale applications

Message queues/brokers, pub-sub

Techno: Kafka, Rabbit-MQ, Zero-MQ, etc

Provide extra fault tolerance (avoids message lost)

31

Enabling technologies related to deployment

Containers + Orchestration

Services provided by Cloud providers

Managed databases

Message brokers

Serverless

32

Discussion about the
challenges

33

Complex development and maintenance

Multiple technologies

Complex relations between services

Debugging?

Complex deployment with a large number of services

Monitoring?

Require experienced developers

A monolithic approach is the best choice in many cases

34

Complex data management

Data are distributed over multiple databases

How to manage the application state?

May have to deal with low level of consistency (eventual consistency)

Solutions to modify the application state:

Distributed transactions

Difficult topic

Sagas

A global transaction as a sequence of local transactions

Compensating transactions need to be defined in case a transaction fail (instead of

classical rollback)

35

About the complexity of the applications

Studies in large companies
Alibaba

5% of microservices are used by more than 90% of online service

Meta

18K services; 12M service instances [Meta]

The number of service instances doubled in 2 years

Analysis of number of services calling (fade-in) and called by each service (fade-out)

See: Huye, Darby, Yuri Shkuro, and Raja R. Sambasivan. "Lifting the veil on Meta’s microservice architecture: Analyses of
topology and request workflows." 2023 USENIX Annual Technical Conference.

See: Luo, Shutian, et al. "Characterizing microservice dependency and performance: Alibaba trace analysis." SoCC 2021.

36

About the complexity of monitoring

Tracing
Trace the set of calls generated by a request to a service

Useful for debugging

Useful to try analyzing performance issues

Set of tools to trace RPC calls

OpenTracing, Jeager, etc.

37

About the complexity of monitoring/debugging

Study of the Uber application

See: Zhang, Zhizhou, et al. "CRISP: Critical Path Analysis of Large-Scale Microservice Architectures." 2022 USENIX Annual
Technical Conference.

38

About the complexity of monitoring/debugging

Study of the Uber application

Manual debugging becomes impossible

Goal of the paper: Automatic tool for Critical-Path Analysis

See: Zhang, Zhizhou, et al. "CRISP: Critical Path Analysis of Large-Scale Microservice Architectures." 2022 USENIX Annual
Technical Conference.

39

About performance

Tail at scale
Tail latency is a major issue in distributed systems (cf "end-to-end latency" in previous slide)

Because of the accumulation of many small delays, the response time for some

requests might be very bad

Monolithic apps might perform better with respect to tail latency

See: Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud &
edge systems.", ASPLOS 2019.

40

Tail at scale

Impact of a serverless approach on cost and tail latency

Serverless can significantly reduce costs but with a negative impact on tail latency

The Lambda (mem) approach is an ad-hoc solution to use the memory of additional VMs to

transfer data between microservices

See: Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud &
edge systems.", ASPLOS 2019.

41

About performance

Autoscalling
How to decide which service to scale and when?

Scale horizontally or vertically?

In this experiment, the bad decisions of HPA have a 6x impact on latency

See: Luo, Shutian, et al. "The power of prediction: Microservice auto scaling via workload learning." SoCC 2022.

42

