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Goals of the lecture

• Present the main challenges associated with distributed
computing

• Review the MapReduce programming model for distributed
computing
I Discuss the limitations of Hadoop MapReduce

• Learn about Apache Spark and its internals

• Start programming with PySpark
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Distributed computing: Definition

A distributed computing system is a system including several
computational entities where:

• Each entity has its own local memory

• All entities communicate by message passing over a network

Each entity of the system is called a node.
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Distributed computing: Motivation

There are several reasons why one may want to distribute data and
processing:

• Scalability
I The data do not fit in the memory/storage of one node
I The processing power of more processor can reduce the time

to solution

• Fault tolerance / availability
I Continuing delivering a service despite node crashes.

• Latency
I Put computing resources close to the users to decrease latency
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Increasing the processing power

Goals

• Increasing the amount of data that can be processed (weak
scaling)

• Decreasing the time needed to process a given amount of data
(strong scaling)

Two solutions

• Scaling up

• Scaling out
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Vertical scaling (scaling up)

Idea
Increase the processing power by adding resources to existing
nodes:

• Upgrade the processor (more cores, higher frequency)

• Increase memory capacity

• Increase storage capacity

Pros and Cons

© Performance improvement without modifying the application

§ Limited scalability (capabilities of the hardware)

§ Expensive (non linear costs)
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Horizontal scaling (scaling out)

Idea
Increase the processing power by adding more nodes to the system

• Cluster of commodity servers

Pros and Cons

§ Often requires modifying applications

© Less expensive (nodes can be turned off when not needed)

© Infinite scalability

Main focus of this lecture
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Large scale infrastructures

Figure: Google Data-center

Figure: Amazon Data-center

Figure: Barcelona Supercomputing
Center
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Programming for large-scale infrastructures

Challenges

• Performance
I How to take full advantage of the available resources?
I Moving data is costly

• How to maximize the ratio between computation and
communication?

• Scalability
I How to take advantage of a large number of distributed

resources?

• Fault tolerance
I The more resources, the higher the probability of failure
I MTBF (Mean Time Between Failures)

• MTBF of one server = 3 years
• MTBF of 1000 servers ' 19 hours (beware: over-simplified

computation)
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Programming in the Clouds
Cloud computing

• A service provider gives access to computing resources
through an internet connection.

Pros and Cons

© Pay only for the resources you use

© Get access to large amount of resources
I Amazon Web Services features millions of servers

§ Volatility
I Low control on the resources
I Example: Access to resources based on bidding
I See ”The Netflix Simian Army”

§ Performance variability
I Physical resources shared with other users
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Architecture of a data center
Simplified

Switch

: storage : memory : processor
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Architecture of a data center

A shared-nothing architecture

• Horizontal scaling

• No specific hardware

A hierarchical infrastructure

• Resources clustered in racks

• Communication inside a rack is more efficient than between
racks

• Resources can even be geographically distributed over several
datacenters
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A warning about distributed computing

You can have a second computer once you’ve shown you
know how to use the first one. (P. Braham)

Horizontal scaling is very popular.

• But not always the most efficient solution (both in time and
cost)

Examples

• Processing a few 10s of GB of data is often more efficient on
a single machine that on a cluster of machines

• Sometimes a single threaded program outperforms a cluster of
machines (F. McSherry et al. “Scalability? But at what
COST!”. 2015.)
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Summary of the challenges

Context of execution

• Large number of resources
• Resources can crash (or disappear)

I Failure is the norm rather than the exception.

• Resources can be slow

Objectives

• Run until completion
I And obtain a correct result :-)

• Run fast
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Shared memory and message passing

Two paradigms for communicating between computing entities:

• Shared memory

• Message passing
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Shared memory

• Entities share a global memory

• Communication by reading and writing to the globally shared
memory

• Examples: Pthreads, OpenMP, etc

20



Message passing

• Entities have their own private memory

• Communication by sending/receiving messages over a network

• Example: MPI
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Dealing with failures: Checkpointing

Checkpointing

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

• Saving the complete state of the application periodically

• Restart from the most recent checkpoint in the event of a
failure.

22



Dealing with failures: Checkpointing

Checkpointing

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

• Saving the complete state of the application periodically

• Restart from the most recent checkpoint in the event of a
failure.

22



Dealing with failures: Checkpointing

Checkpointing

App

ckpt 1 ckpt 2 ckpt 3 ckpt 4

• Saving the complete state of the application periodically

• Restart from the most recent checkpoint in the event of a
failure.

22



About checkpointing

Main solution when processes can apply fine-grained modifications
to the data (Pthreads or MPI)

• A process can modify any single byte independently

• Impossible to log all modifications

Limits

• Performance cost

• Difficult to implement

• The alternatives (passive or active replication) are even more
costly and difficult to implement in most cases
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About slow resources (stragglers)
Performance variations

• Both for the nodes and the network

• Resources shared with other users

Impact on classical message-passing systems (MPI)

• Tightly-coupled processes
I Process A waits for a message from process B before

continuing its computation

Do some computation

new_data = Recv(from B) /*blocking*/

Resume computing with new_data

Figure: Code of process A. If B is slow, A becomes idle.

24



The Big Data approach

Provide a distributed computing execution framework

• Simplify parallelization
I Define a programming model
I Handle distribution of the data and the computation

• Fault tolerant
I Detect failure
I Automatically takes corrective actions

• Code once (expert), benefit to all

Limit the operations that a user can run on data

• Inspired from functional programming (eg, MapReduce)
• Examples of frameworks:

I Hadoop MapReduce, Apache Spark, Apache Flink, etc
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MapReduce at Google
References

• The Google file system, S. Ghemawat et al. SOSP 2003.

• MapReduce: simplified data processing on large clusters, D.
Jeffrey and S. Ghemawat. OSDI 2004.

Main ideas

• Data represented as key-value pairs

• Two main operations on data: Map and Reduce
• A distributed file system

I Compute where the data are located

Use at Google

• Compute the index of the World Wide Web.

• Google has moved on to other technologies
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Apache Hadoop
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Apache Hadoop

In a few words

• Built on top of the ideas of Google

• A full data processing stack
• The core elements

I A distributed file system: HDFS (Hadoop Distributed File
System)

I A programming model and execution framework: Hadoop
MapReduce

MapReduce

• Allows simply expressing many parallel/distributed
computational algorithms
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MapReduce

The Map operation

• Transformation operation

• map(f )[x0, ..., xn] = [f (x0), ..., f (xn)]

• map(∗2)[2, 3, 6] = [4, 6, 12]

The Reduce operation

• Aggregation operation (fold)

• reduce(f )[x0, ..., xn] = [f ((x0), f ((x1), ..., f (xn−1, xn)))]

• reduce(+)[2, 3, 6] = (2 + (3 + 6)) = 11
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Hadoop MapReduce

Key/Value pairs

• MapReduce manipulate sets of Key/Value pairs

• Keys and values can be of any types

Functions to apply

• The user defines the functions to apply

• In Map, the function is applied independently to each pair

• In Reduce, the function is applied to all values with the same
key
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Hadoop MapReduce

About the Map operation

• A given input pair may map to zero or many output pairs

• Output pairs need not be of the same type as input pairs

About the Reduce operation

• Applies operation to all pairs with the same key
• 3 steps:

I Shuffle and Sort: Groups and merges the output of mappers by
key

I Reduce: Apply the reduce operation to the new key/value pairs
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A first MapReduce program
Word Count

Description

• Input: A set of lines including words
I Pairs < line number, line content >
I The initial keys are ignored in this example

• Output: A set of pairs < word, nb of occurrences >

Input

• < 1, ”aaa bb ccc” >

• < 2, ”aaa bb” >

Output

• < ”aaa”, 2 >

• < ”bb”, 2 >

• < ”ccc”, 1 >
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A first MapReduce program
Word Count

map(key, value): /* pairs of {line num, content} */

foreach word in value.split():

emit(word, 1)

reduce(key, values): /* {word, list nb occurences} */

result = 0

for value in values:

result += value

emit(key, result) /* -> {word, nb occurences} */
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A first MapReduce program
Word Count

1, ”aaa bb ccc”

2, ”bb bb d”

3, ”d aaa bb”

4, ”d”

map

”aaa”, 1

”bb”, 1

”ccc”, 1

”bb”, 1

”bb”, 1

”d”, 1

”d”, 1

”aaa”, 1

”bb”, 1

”d”, 1

reduce

”aaa”, 2

”bb”, 4

”ccc”, 1

”d”, 3

Logical representation (no notion of distribution)
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Distributed execution of Word Count

1, ”aa bb”

2, ”aa aa”

1, ”bb bb”

2, ”bb”

map

map

node A

node B

node A

node B

”aa”, 1

”bb”, 1

”aa”, 1

”aa”, 1

”bb”, 1

”bb”, 1

”bb”, 1

comb

comb

node A

node B

”aa”, 3

”bb”, 1

”bb”, 3

re
du

ce

reduce

node C

”aa”, 3

”bb”, 4
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Example: Web index

Description

Construct an index of the pages in which a word appears.

• Input: A set of web pages
I Pairs < URL, content of the page >

• Output: A set of pairs < word, set of URLs >
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Example: Web index

map(key, value): /* pairs of {URL, page_content} */

foreach word in value.parse():

emit(word, key)

reduce(key, values): /* {word, URLs} */

list=[]

for value in values:

list.add(value)

emit(key, list) /* {word, list of URLs} */
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Running at scale

How to distribute data?

• Partitioning • Replication

Partitioning

• Splitting the data into partitions

• Partitions are assigned to different nodes
• Main goal: Performance

I Partitions can be processed in parallel

Replication

• Several nodes host a copy of the data
• Main goal: Fault tolerance

I No data lost if one node crashes
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Hadoop Distributed File System (HDFS)

Main ideas

• Running on a cluster of commodity servers
I Each node has a local disk
I A node may fail at any time

• The content of files is stored on the disks of the nodes
I Partitioning: Files are partitioned into blocks that can be

stored in different Datanodes
I Replication: Each block is replicated in multiple Datanodes

• Default replication degree: 3

I A Namenode regulates access to files by clients
• Master-worker architecture
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HDFS architecture
Figure from https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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Hadoop data workflow
Figure from
https://www.supinfo.com/articles/single/2807-introduction-to-the-mapreduce-life-cycle
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Hadoop workflow: a few comments

Data movements
• Map tasks are executing on nodes where the data blocks are

hosted
I Or on close nodes
I Less expensive to move computation than to move data

• Load balancing between the reducers
I Output of mappers are partitioned according to the number of

reducers (modulo on a hash of the key)

43



Hadoop workflow: a few comments

I/O operations

• Map tasks read data from disks
• Output of the mappers are stored in memory if possible

I Otherwise flushed to disk

• The result of reduce tasks in written into HDFS

Fault tolerance
• Execution of tasks is monitored by the master node

I Tasks are launched again on other nodes if crashed or too slow
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Apache Spark

• Originally developed at Univ. of California

• Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing, M. Zaharia et al. NSDI, 2012.

• One of the most popular Big Data project today.
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Spark vs Hadoop

Spark added value

• Performance
I Especially for iterative algorithms

• Interactive queries

• Supports more operations on data

• A full ecosystem (High level libraries)

• Running on your machine or at scale

Main novelties

• Computing in memory

• A new computing abstraction: Resilient Distributed Datasets
(RDD)
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Programming with Spark

Spark Core API

• Scala

• Python
• Java

Integration with Hadoop

Works with any storage source supported by Hadoop

• Local file systems

• HDFS

• Cassandra

• Amazon S3
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Many resources to get started

• https://spark.apache.org/

• https://sparkhub.databricks.com/

• Many courses, tutorials, and examples available online
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Starting with Spark

Running in local mode

• Spark runs in a JVM
I Spark is coded in Scala

• Read data from your local file system

Use interactive shell

• Scala (spark-shell)

• Python (pyspark)

• Run locally or distributed at scale

50



A very first example with pyspark
Counting lines
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The Spark Web UI
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The Spark built-in libraries

• Spark SQL: For structured data (Dataframes)

• Spark Streaming: Stream processing (micro-batching)

• MLlib: Machine learning

• GraphX: Graph processing
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In-memory computing: Insights
See Latency Numbers Every Programmer Should Know

Memory is way faster than disks

Read latency

• HDD: a few milliseconds

• SDD: 10s of microseconds (100X faster than HDD)

• DRAM: 100 nanoseconds (100X faster than SDD)
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In-memory computing: Insights
Graph by P. Johnson

Cost of memory decreases = More memory per server
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Efficient iterative computation

Hadoop: At each step, data go through the disks

Spark: Data remain in memory (if possible)
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Main challenge

Fault Tolerance

Failure is the norm rather than the exception

On a node failure, all data in memory is lost
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Resilient Distributed Datasets

Restricted form of distributed shared memory

• Read-only partitioned collection of records

• Creation of an RDD through deterministic operations
(transformations) on either:
I Data stored on disk
I an existing RDD

59



Transformations and actions

Programming with RDDs

• An RDD is represented as an object

• Programmer defines RDDs using Transformations
I Applied to data on disk or to existing RDDs
I Examples of transformations: map, filter, join

• Programmer uses RDDs in Actions
I Operations that return a value or export data to the file system
I Examples of actions: count, reduce
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Fault tolerance with Lineage

Lineage = a description of a RDD

• The data source on disk
• The sequence of applied transformations

I Same transformation applied to all elements
I Low footprint for storing a lineage

Fault tolerance

• RDD partition lost
I Replay all transformations on the subset of input data or the

most recent RDD available

• Deal with stragglers
I Generate a new copy of a partition on another node
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Spark runtime
Figure by M. Zaharia et al

• Driver
I Executes the user

program
I Defines RDDs and invokes

actions
I Tracks RDD’s lineage

• Workers
I Store RDD partitions
I Perform transformations

and actions
• Run tasks
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Persistence and partitioning
See https:

//spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence

Different options of persistence for RDDs

• Options:
I Storage: memory/disk/both
I Replication: yes/no
I Serialization: yes/no

Partitions

• RDDs are automatically partitioned based on:
I The configuration of the target platform (nodes, CPUs)
I The size of the RDD
I User can also specify its own partitioning

• Tasks are created for each partition
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RDD dependencies
Transformations create dependencies between RDDs.

2 kinds of dependencies

• Narrow dependencies
I Each partition in the parent is used by at most one partition in

the child

• Wide (shuffle) dependencies
I Each partition in the parent is used by multiple partitions in

the child

Impact of dependencies

• Scheduling: Which tasks can be run independently

• Fault tolerance: Which partitions are needed to recreate a lost
partition

• Communication: Shuffling implies large amount of data
exchanges
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RDD dependencies
Figure by M. Zaharia et al

65



Executing transformations and actions

Lazy evaluation

• Transformations are executed only when an action is called on
the corresponding RDD

• Examples of optimizations allowed by lazy evaluation
I Read file from disk + action first(): no need to read the

whole file
I Read file from disk + transformation filter(): No need to

create an intermediate object that contains all lines
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Persist an RDD

• By default, an RDD is recomputed for each action run on it.

• A RDD can be cached in memory calling persist() or
cache()
I Useful is multiple actions to be run on the same RDD

(iterative algorithms)
I Can lead to 10X speedup
I Note that a call to persist does not trigger transformations

evaluation
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The SparkContext

What is it?

• Object representing a connection to an execution cluster

• We need a SparkContext to build RDDs

Creation

• Automatically created when running in shell (variable sc)

• To be initialized when writing a standalone application

Initialization

• Run in local mode with nb threads = nb cores: local[*]

• Run in local mode with 2 threads: local[2]

• Run on a spark cluster: spark://HOST:PORT
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The SparkContext

Python shell

$ pyspark --master local[*]

Python program

import pyspark

sc = pyspark.SparkContext("local[*]")
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The first RDDs

Create RDD from existing iterator

• Use of SparkContext.parallelize()

• Optional second argument to define the number of partitions

data = [1, 2, 3, 4, 5]

distData = sc.parallelize(data)

Create RDD from a file

• Use of SparkContext.textFile()

data = sc.textFile("myfile.txt")

hdfsData = sc.textFile("hdfs://myhdfsfile.txt")
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Some transformations
see https:

//spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

• map(f): Applies f to all elements of the RDD. f generates a single
item

• flatMap(f): Same as map but f can generate 0 or several items

• filter(f): New RDD with the elements for which f return true

• union(other)/intersection(other): New RDD being the
union/intersection of the initial RDD and other .

• cartesian(other): When called on datasets of types T and U, returns
a dataset of (T, U) pairs (all pairs of elements)

• distinct(): New RDD with the distinct elements

• repartition(n): Reshuffle the data in the RDD randomly to create
either more or fewer partitions and balance it across them
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Some transformations with <K,V> pairs

• groupByKey(): When called on a dataset of (K, V) pairs, returns a
dataset of (K, Iterable<V>) pairs.

• reduceByKey(f): When called on a dataset of (K, V) pairs, Merge
the values for each key using an associative and commutative
reduce function.

• aggregateByKey(): see documentation

• join(other): Called on datasets of type (K, V) and (K, W), returns a
dataset of (K, (V, W)) pairs with all pairs of elements for each key.
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Some actions
see
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

• reduce(f): Aggregate the elements of the dataset using f (takes two
arguments and returns one).

• collect(): Return all the elements of the dataset as an array.

• count(): Return the number of elements in the dataset.

• take(n): Return an array with the first n elements of the dataset.

• takeSample(): Return an array with a random sample of num
elements of the dataset.

• countByKey(): Only available on RDDs of type (K, V). Returns a
hashmap of (K, Int) pairs with the count of each key.
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An example

from pyspark.context import SparkContext

sc = SparkContext("local")

# define a first RDD

lines = sc.textFile("data.txt")

# define a second RDD

lineLengths = lines.map(lambda s: len(s))

# Make the RDD persist in memory

lineLengths.persist()

# At this point no transformation has been run

# Launch the evaluation of all transformations

totalLength = lineLengths.reduce(lambda a, b: a + b)
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An example with key-value pairs

lines = sc.textFile("data.txt")

words = lines.flatMap(lambda s: s.split(’ ’))

pairs = words.map(lambda s: (s, 1))

counts = pairs.reduceByKey(lambda a, b: a + b)

# Warning: sortByKey implies shuffle

result = counts.sortByKey().collect()

76



Another example with key-value pairs

rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])

# mapValues applies f to each value

# without changing the key

sorted(rdd.groupByKey().mapValues(len).collect())

# [(’a’, 2), (’b’, 1)]

sorted(rdd.groupByKey().mapValues(list).collect())

# [(’a’, [1, 1]), (’b’, [1])]
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Shared Variables
see https://spark.apache.org/docs/latest/rdd-programming-guide.html#

shared-variables

Broadcast variables

• Use-case: A read-only large variable should be made available
to all tasks (e.g., used in a map function)

• Costly to be shipped with each task
• Declare a broadcast variable

I Spark will make the variable available to all tasks in an
efficient way
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Example with a Broadcast variable

b = sc.broadcast([1, 2, 3, 4, 5])

print(b.value)

# [1, 2, 3, 4, 5]

print(sc.parallelize([0, 0]).

flatMap(lambda x: b.value).collect())

# [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

b.unpersist()
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Shared Variables

Accumulator

• Use-case: Accumulate values over all tasks
• Declare an Accumulator on the driver

I Updates by the tasks are automatically propagated to the
driver.

• Default accumulator: operator ’+=’ on int and float.
I User can define custom accumulator functions
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Example with an Accumulator

file = sc.textFile(inputFile)

# Create Accumulator[Int] initialized to 0

blankLines = sc.accumulator(0)

def splitLine(line):

# Make the global variable accessible

global blankLines

if not line:

blankLines += 1

return line.split(" ")

words = file.flatMap(splitLine)

print(blankLines.value)
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Job scheduling

Main ideas

• Tasks are run when the user calls an action

• A Directed Acyclic Graph (DAG) of transformations is built
based on the RDD’s lineage

• The DAG is divided into stages. Boundaries of a stage defined
by:
I Wide dependencies
I Already computed RDDs

• Tasks are launch to compute missing partitions from each
stage until target RDD is computed
I Data locality is taken into account when assigning tasks to

workers
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Stages in a RDD’s DAG
Figure by M. Zaharia et al
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